DYWIDAG-Systems International (DSI) - Your Partner for innovative Systems and Solutions

Proven Quality

![Image of high-quality construction equipment]

Punctual Supply

![Image of construction supplies on site]

Excellent Service

![Image of service personnel working on site]
The origins of DYWIDAG-Systems International (DSI) date back to the founding of Dyckerhoff & Widmann AG (DYWIDAG) in 1865, and thus, back to the beginning of industrial construction. As a recognized market leader in Geotechnics in Germany and Europe, DSI offers all established systems in specialized civil engineering. The product range includes ground anchors, micropiles and soil and rock bolts. GEW® and GEW® Plus Threadbars that are threadable along their entire lengths, tensioning bars, DYWI® Drill Hollow Bars and prestressing steel strands that are used as load-bearing tendons.

Thanks to our long-term experience in the development, approval, production and application of geotechnical products, we can guarantee you as our clients high quality products and systems that fulfill the highest standards of quality.

As leaders in innovation, we have been offering you a comprehensive product range of technically sophisticated solutions for decades. We promote new technical developments and research projects. Global patent applications are proof of our leading position and form the foundation of our successful work – to your benefit.

Customized special solutions and adaptations of our products are developed by competent and experienced engineers in our technical specialist departments just-in-time in a practice-oriented way.

As permanent members in the relevant committees of experts and standards, we continuously advance technical developments as well as the safety and application of our products and systems. Wherever required, we also offer support for approvals in individual cases and for applications and designs that meet newly introduced European norms. In addition, we also provide technical expertise and reports.

We maintain a large variety of building-authority approvals and are continuously expanding our comprehensive product range.
Furthermore, we provide complete equipment technology for a safe and trouble-free installation. We rent and sell equipment such as tensioning jacks, grout mixers and torque equipment with corresponding accessories. As a matter of course, our comprehensive services also include the professional calibration, maintenance and repair of the equipment as well as project specific special solutions.

We provide advice to participating planners and engineers during project execution and we are happy to assist you with CAD drawings and dimensioning aids. On demand, we train site personnel on site and support our clients during installation, test loading and approval testing.

Our highly qualified and experienced employees provide competent, quick and reliable support throughout your project.

At our facility in Pasching/Linz, Austria, we produce all our high-quality hollow bars for self-drilling systems under the brand name DYW® Drill for civil engineering and tunneling.

DSI - Your independent System Supplier and competent Partner for Civil Engineering.
Fields of Application

Excavations

Large and deep excavations are becoming more and more important especially in intra-urban areas, and ground anchors have proven themselves particularly useful in this extremely challenging civil engineering application. Very often, they are the only way to support excavations. Furthermore, anchors are often the most economical solution in comparison to steel or concrete cross braces: Unrestricted access to the excavation, uninterrupted and obstruction-free crane operation, no risk of buckling and almost limitless options in terms of anchor forces.

If required, ground anchors can be removed from the soil after completing civil engineering work in order not to interfere with subsequent site activities. Due to their being an active system, ground anchors are tensioned so that deformations of the excavation confinement are actively managed.

Controlled load application is ensured before excavation is begun so that construction work is safe for all parties involved as well as for adjacent buildings. In excavations where deformations are irrelevant, passive systems such as soil nails or tension piles can be used.

- Bar and Strand Anchors
- GEWI® Soil and Rock Bolts
- DYWI® Drill Soil and Rock Bolts
- Bar and Strand Anchors

Slope Stabilization and Sidehill Cuts

The development and expansion of infrastructure – and, more specifically, the construction of high-speed corridors – poses significant requirements in terms of route planning. The expansion of motorways by adding more lanes often requires comprehensive earth work and results in high, steep embankments in the cut slopes and hills. The faces of slope stabilization structures – e.g. shotcrete construction or walls consisting of prefabricated concrete segments – are often anchored in the soil using soil nails.

Rock fall protection mesh can also be fixed to the rock using this technique. Soil nailing stabilizes and consolidates the complete soil. The entire soil wedge including the slip circle is nailed and secured against tilting, sliding, gliding, shear failure and loss of position. Passive Systems are usually used in this case because deformations of the supporting system are irrelevant in most cases – the soil nails are only loaded when movements in the slope or at the face start. At full load, the earth pressure is completely absorbed and transferred by the solid nails.

If deformations are important in slope stabilization projects, an active system such as ground anchors can be chosen.

- GEWI® Soil and Rock Bolts
- DYWI® Drill Soil and Rock Bolts
- Bar and Strand Anchors

Hydraulic, Power Plant and Embankment Construction

New criteria for assessment and higher maximum water levels pose higher requirements for retaining walls and dams. Existing structures must comply with completely new requirements for stability caused by higher freezing pressures, updated earthquake load zones and new requirements in terms of impermeability and position stability or stability against overturning.

For reinforcing and simultaneous rehabilitation, this challenging increase in load bearing capacity can often be reached by a massive anchoring of the dam structure. In this case, boreholes are drilled vertically from the dam crest, and the dam wall is anchored at the bottom using ground anchors. Lift-off suction power can also be overcome by anchoring overflow structures and stilling basins permanently into the soil using anchors or tensile piles.
Fields of Application

Depending on water levels, different load conditions can also be safely absorbed by anchors (in case of tensile load only) or micropiles (even for alternating loads) at retaining dams.

Caissons consisting of driven sheet piles are built for cofferdams or new quays. They are assembled at the head using tie rod systems and thus stabilized against uplift during sand filling and against subsequent loads resulting from dead weight and traffic.

- Soil and Rock Bolts
- Bar and Strand Anchors
- GEW® and GEW® Plus Piles
- Tie Rods

Tie Rods and Braces

Tie rod systems are used in all cases in which two or more points of a structure must be stabilized relative to one another. Earth filled dams that are laterally stabilized by driven sheet piles are stabilized by tiebacks at the head. Stabilizing cross ties with remarkable tensile force capacity can also be realized. Drifting horizontal forces in individual or strip foundations can also be transferred using tie rods.

- DYWIDAG GEW®, GEW® Plus and Y1050H prestressing steel Threadbar
- Strands

Uplift Control

Uplift occurs in a large variety of foundation structures independent of the existing water level or by variable superimposed loads. The bottom slab of construction excavations (underwater concrete or high-pressure injection slabs) must be secured temporarily during the period of construction. This also applies to trough structures such as descending tunnel entrances for subway construction. Tensile piles are increasingly used as an economic alternative to mass concrete. If position accuracy is particularly important – for instance, during the construction of dry docks – tensioned anchors can be used. The principle advantage of this system construction method results from shortened construction times due to less excavation work and a reduction of bottom slab thicknesses.

However, alternating loads can result from pile uplift control such as inspection work in settling basins. In cases like these, loads can be economically changed from compression to tension without any problems.

- GEW® and GEW® Plus Piles
- Bar and Strand Anchors

Anchoring of Tensile Loads

Tensile loads in soil can be economically tied back using ground anchors or tensile piles. Large, heavy and noticeable counter balances or retaining structures can be eliminated because tensile loads are directly transferred into the soil so that only unobtrusive transition structures and connections remain at the surface. Depending on the characteristics of the load-bearing soil strata, and the method of excavation, different varieties of civil engineering systems can be chosen. The characteristics of the ground used for anchorage are also irrelevant - whether rock, non-cohesive soils such as sand or gravel, cohesive soils such as clay or silt, organic soils with and without groundwater or even permafrost and Antarctic ice - DYWIDAG Systems have permanently proven their aptitude in terms of function and economy.

- GEW® and GEW® Plus Piles
- Bar and Strand Anchors
- GEW® Soil and Rock Bolts
- DYWIDAG Drill Soil and Rock Bolts

Stability against Overturning

Structures that are at risk of tipping such as masts, towers or wind generators can be permanently stabilized using micropiles. As a fully grouted, passive system, micropiles can accommodate tensile, compression and alternating loads. To minimize settlements, deformations and movements, actively tensioned ground anchors can also be used to transfer tensile forces. Anticipated compression forces are absorbed via a stiff shallow foundation or via additional compression piles. Thus, a build-up of forces and movements can be minimized or prevented. The structures can even be further reinforced at a later stage if the foundation shows early stages of overload or if exterior impact is more severe (wind, earthquakes, snow, etc.).

- Bar and Strand Anchors
- GEW® and GEW® Plus Piles
DYWIDAG Threadbar Anchors

Basic Concept

DYWIDAG Threadbar Anchors are an actively tensioned ground anchor system and correspond to DIN 4125 and EN 1537 regulations. Due to the active tensioning, anticipated deformations of the system and deformations at the civil engineering measure are minimized or entirely eliminated. This applies both to temporary structures (e.g. temporary pit support systems) and permanent tie backs.

By definition, an anchor consists of three main components:

- Bonded length: The anchor is fixed in the borehole using grout (cement mortar) and can transfer the forces to the load-bearing soil via bond and skin friction
- Unbonded length: The bar is uncoupled from the borehole using a plain tube (sheathing) so that it can freely extend in the unbonded length. This way, tension can be applied to the anchor system
- Anchor head: The anchor head transfers the anchor force to the substructure and thus to the structure that needs to be anchored

Once the grout has sufficiently hardened, the load bearing capacity of each anchor is tested during an approval test.

If required, anchors can be supplied retensioned or detensionable. Permanent control of anchor forces can be realized by installing load cells. Alternatively, permanent controls can also be carried out at the anchor head or in the borehole using the contactless force measuring system DYNA Force® that has been specially developed together with DSI.

Bar Anchor Drawing

Fields of Application

- Intra-urban construction
- Excavations (deformation resistant)
- Tiebacks
- Rock and slope stabilization
- Uplift control
- Positional stability
- Dam construction
- Ascending anchors

Key Features

- Threadbars with proven coarse GEW® Thread that is suitable for on-site use along the entire length; lengths can be adjusted on site without any problems using the appropriate accessories and equipment
- Various steel grades
 - High quality tensioning bars for a good force / borehole ratio
 - Robust, weldable GEW® Bar
 - GEW® Plus Bars for highest wear
- Variable anchor head and angle compensation designs
- Easy handling: tensioning, retensioning or detensioning thanks to screwable anchorage
- Easy overhead installation – for instance in cavern roofs – due to the high rigidity of the bar system

Additional Information

German Approval DIBt Z-20.1-17 / DIBt Z-34.11-225 / Austrian Approval BMVIT-327.120/0053-IV/ST2/2011 / BMVIT-327.120/0034-II/ST2/2005
DYWIDAG Threadbar Anchors

Technical Data

DYWIDAG Y1050H Prestressing Steel

<table>
<thead>
<tr>
<th>Nominal diameter Ø [mm]</th>
<th>Yield strength / tensile strength $f_{p0.1k}/f_{pk}$ [N/mm²]</th>
<th>Cross-sectional area A [mm²]</th>
<th>Load at yield $F_{p0.1k}$ [kN]</th>
<th>Ultimate load F_{pk} [kN]</th>
<th>Weight [kg/m]</th>
<th>Weight DCP [kg/m]</th>
<th>Approval</th>
</tr>
</thead>
<tbody>
<tr>
<td>26.5</td>
<td>950/1,050</td>
<td>552</td>
<td>525</td>
<td>580</td>
<td>4.48</td>
<td>7.4</td>
<td>X</td>
</tr>
<tr>
<td>32</td>
<td>950/1,050</td>
<td>804</td>
<td>760</td>
<td>845</td>
<td>6.53</td>
<td>9.8</td>
<td>X</td>
</tr>
<tr>
<td>36</td>
<td>950/1,050</td>
<td>1,018</td>
<td>960</td>
<td>1,070</td>
<td>8.27</td>
<td>12.3</td>
<td>X</td>
</tr>
<tr>
<td>40</td>
<td>950/1,050</td>
<td>1,257</td>
<td>1,190</td>
<td>1,320</td>
<td>10.21</td>
<td>14.0</td>
<td>X</td>
</tr>
<tr>
<td>47</td>
<td>950/1,050</td>
<td>1,735</td>
<td>1,650</td>
<td>1,820</td>
<td>14.10</td>
<td>20.0</td>
<td>X</td>
</tr>
</tbody>
</table>

GEW® B500B Threadbar

<table>
<thead>
<tr>
<th>Nominal diameter Ø [mm]</th>
<th>Yield strength / tensile strength $f_{p0.2k}/f_{tk}$ [N/mm²]</th>
<th>Cross-sectional area A [mm²]</th>
<th>Load at yield F_{yk} [kN]</th>
<th>Ultimate load F_{tk} [kN]</th>
<th>Weight [kg/m]</th>
<th>Weight DCP [kg/m]</th>
<th>Approval</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>500/550</td>
<td>804</td>
<td>402</td>
<td>442</td>
<td>6.31</td>
<td>9.5</td>
<td>△</td>
</tr>
<tr>
<td>40</td>
<td>500/550</td>
<td>1,257</td>
<td>628</td>
<td>691</td>
<td>9.86</td>
<td>13.6</td>
<td>△</td>
</tr>
<tr>
<td>50</td>
<td>500/550</td>
<td>1,963</td>
<td>982</td>
<td>1,080</td>
<td>15.41</td>
<td>21.0</td>
<td>△</td>
</tr>
<tr>
<td>63.5</td>
<td>555/700</td>
<td>3,167</td>
<td>1,758</td>
<td>2,217</td>
<td>24.86</td>
<td>32.4</td>
<td>△</td>
</tr>
</tbody>
</table>

GEW® Plus S670/800 Threadbar

<table>
<thead>
<tr>
<th>Nominal diameter Ø [mm]</th>
<th>Yield strength / tensile strength $f_{p0.2k}/f_{tk}$ [N/mm²]</th>
<th>Cross-sectional area A [mm²]</th>
<th>Load at yield F_{yk} [kN]</th>
<th>Ultimate load F_{tk} [kN]</th>
<th>Weight [kg/m]</th>
<th>Weight DCP [kg/m]</th>
<th>Approval</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>670/800</td>
<td>254</td>
<td>170</td>
<td>204</td>
<td>2.00</td>
<td>5.4</td>
<td>□</td>
</tr>
<tr>
<td>22</td>
<td>670/800</td>
<td>380</td>
<td>255</td>
<td>304</td>
<td>2.98</td>
<td>6.5</td>
<td>□</td>
</tr>
<tr>
<td>25</td>
<td>670/800</td>
<td>491</td>
<td>329</td>
<td>393</td>
<td>3.85</td>
<td>7.0</td>
<td>□</td>
</tr>
<tr>
<td>28</td>
<td>670/800</td>
<td>616</td>
<td>413</td>
<td>493</td>
<td>4.83</td>
<td>8.6</td>
<td>□</td>
</tr>
<tr>
<td>30</td>
<td>670/800</td>
<td>707</td>
<td>474</td>
<td>565</td>
<td>5.55</td>
<td>9.0</td>
<td>□</td>
</tr>
<tr>
<td>35</td>
<td>670/800</td>
<td>962</td>
<td>645</td>
<td>770</td>
<td>7.55</td>
<td>11.3</td>
<td>□</td>
</tr>
<tr>
<td>43</td>
<td>670/800</td>
<td>1,452</td>
<td>973</td>
<td>1,162</td>
<td>11.40</td>
<td>15.8</td>
<td>□</td>
</tr>
<tr>
<td>57.5</td>
<td>670/800</td>
<td>2,597</td>
<td>1,740</td>
<td>2,077</td>
<td>20.38</td>
<td>30.0</td>
<td>□</td>
</tr>
<tr>
<td>63.5</td>
<td>670/800</td>
<td>3,167</td>
<td>2,122</td>
<td>2,534</td>
<td>24.86</td>
<td>32.4</td>
<td>□</td>
</tr>
<tr>
<td>75</td>
<td>670/800</td>
<td>4,418</td>
<td>2,960</td>
<td>3,534</td>
<td>34.68</td>
<td>43.5</td>
<td>□</td>
</tr>
</tbody>
</table>

Germany: Z-20.1-17 DYWIDAG Threadbar Anchor Y1050H Prestressing Steel
Austria: BMVIT-327.120/0053-IV/ST2/2011 DYWIDAG Threadbar Anchor Y1050H Prestressing Steel
Germany: Z-34.11-225 DYWIDAG GEW® Bar
Austria: BMVIT-327.120/0034-IV/ST2/2005 DYWIDAG GEW® Plus Threadbar

Anchor Head for Permanent Anchors
Anchor Head with Angle Compensation

Additional Information

German Approval DIBt Z-20.1-17 / DIBt Z-34.11-225 / Austrian Approval BMVIT-327.120/0053-IV/ST2/2011 / BMVIT-327.120/0034-IV/ST2/2005
DYWIDAG Threadbar Anchors

Permanent Anchors
- Long-lasting system for permanent use (more than 100 years)
- Approved, Double Corrosion Protection (DCP) achieved by grouted corrugated sheathing with controlled crack width
- Anchor components in accordance with ETA 05/0123 (bar post-tensioning system)

Fields of Application
- Permanent tiebacks
- Uplift control
- Positional stability
- Dam construction
- Rock and slope stabilization

Temporary Anchors
- Temporary system for preliminary use of up to two years
- Extended use after prior agreement of involved experts

Fields of Application
- Excavations
- Temporary tiebacks
- Stabilization of states of construction

Additional Information
German Approval DIBt Z-20.1-17 / DIBt Z-34.11-225 / Austrian Approval BMVIT-327.120/0053-IV/ST2/2011 / BMVIT-327.120/0034-II/ST2/2005
DYWIDAG Threadbar Anchors

Temporary Bar Anchor with Completely Removable Tendon
- Completely removable anchor – the cast compression bodies with predetermined breaking points are the only thing that remains in the soil. They do not obstruct civil engineering work carried out at a later stage (pile driving, excavation, TBM etc.)
- Easy and safe anchor removal: The steel tendon is unscrewed from the end anchorage
- Pressure pipe consisting of patented cast hulls ensures transfer of forces from the tendon to the borehole grout
- Pressure pipe lengths can be adapted to soil conditions on site

Fields of Application
- Excavations
- Temporary tiebacks
- Stabilization of states of construction

Temporary Anchor with Removable Free Length
- Partly removable anchor – free length can be removed
- Easy and safe anchor removal: The steel tendon can be unscrewed from the special coupler in the transition from bonded length to unbonded length
- Slender system – small boreholes can be realized

Fields of Application
- Excavations
- Temporary tiebacks
- Stabilization of states of construction

Additional Information
German Approval DIBt Z-20.1-17 / DIBt Z-34.11-225 / Austrian Approval BMVT-327.120/0053-IV/ST2/2011 / BMVT-327.120/0034-II/ST2/2005
GEWI® Plus Tie Bars Support Retaining Walls, Great Britain

Owner Tesco Stores Limited and Network Rail, both Great Britain
Contractor Costain Group PLC, Great Britain
Engineers Engineering Peter Brett Associates LLP, Great Britain

DSI Unit DYWIDAG-Systems International Ltd., Great Britain
DSI Services Production, Supply and Installation
DSI Products supplied 108, Ø 57.5mm GEWI® Plus Tie Bars; 60, Ø 43mm GEWI® Plus Tie Bars; 336, Anchor Plates with Wedges and Domed Nuts

Owner Federal State of Tyrol, Federal Road Administration, Austria
Contractor Joint Venture, consisting of Alpine, Hilti & Jehle, Austria
Engineers IBPA Engineers Passegger-Autengruber ZT-GmbH, Austria

DSI Unit DYWIDAG-Systems International GmbH, Austria
DSI Services Production and Supply
DSI Products supplied 168, double corrosion protected Ø 63.5mm GEWI® Plus Piles and of Ø 50mm GEWI® Plus Micro piles in lengths of 8 and 15m

References DYWIDAG Threadbar Anchors
References DYWIDAG Threadbar Anchors

Rehabilitation of a Dry Dock using DYWIDAG Bar Anchors, France

Owner DCNS, Lorient, France +++ Contractor SEMEN TP, France

DSI Unit DSI-Artéon, France
DSI Services Production, Supply, Installation and Technical Support
DSI Products supplies 32, Ø 75mm DYWIDAG Bar Anchors; 6, Ø 40mm DYWIDAG Bar Anchors; 33, preassembled Ø 40mm DYWIDAG Bar Anchors; rental of equipment

Retaining Walls of Transbrasiliana Highway stabilized using DYWIDAG Bar Anchors, Brazil

Owner City of Columbus/Ohio, USA +++ Main Contractor Kokosing Construction Co. Inc., Columbus, OH, BBS Corporation, Columbus, OH, J.H.C. Denver Co.

DSI Unit Protendidos DYWIDAG Ltda., Brazil
Protendidos DYWIDAG Services Production and Supply
Protendidos DYWIDAG Products 37,130m, permanent, epoxy coated Ø 32mm DYWIDAG Bar Anchors with accessories
DYWIDAG Strand Anchors

Basic Concept

DYWIDAG Strand Anchors are an actively tensioned ground anchor system and correspond to DIN 4125 and EN 1537 specifications. Tensioning minimizes or eliminates anticipated deformations of the system and deformations at the civil engineering measure. This applies both to temporary structures (e.g. pit support systems) and permanent tie backs.

The strand anchors are produced with double corrosion protection (DCP): each individual strand is covered by corrosion protection compound and inserted into an individual duct in the factory. As long as the grout used for anchoring is load-bearing, the anchor force is unlimited because the number of strands that can be combined in the anchorage is variable at will.

By definition, an anchor consists of three main components:

- **Bonded length**: The anchor is fixed in the borehole using grout (cement mortar) and can transfer the forces to the load-bearing soil via bond and skin friction
- **Unbonded length**: Each strand is uncoupled from the borehole using individual ducts so that it can freely extend in the unbonded length. This way, tension can be applied to the anchor system
- **Anchor head**: The anchor head transfers the anchor force to the substructure and thus to the structure that needs to be anchored

Once the grout has sufficiently hardened, the load bearing capacity of each anchor is tested during an approval test.

If required, anchors can be supplied retensioned or detensionable. Permanent control of anchor forces can be realized by installing load cells. Alternatively, permanent controls can also be carried out at the anchor head or in the borehole using the contactless force measuring system DYNA Force® that has been specially developed together with DSI.

Key Features

- Large degree of flexibility: Force, length, transport, installation
- There are practically no restrictions in terms of length – 150m
- Small pack size for transportation
- Amount of required space is very small during installation
- Retensioning or detensioning thanks to exterior thread at the wedge plates
- Permanent strand anchor can be supplied in many variations (standard, El-Iso, TWIN-Corr)

Fields of Application

- Excavations (deformation resistant)
- Tiebacks
- Uplift control
- Positional stability
- Rock stabilization

Additional Information

German Approval DIBt Z-20.1-53 / DIBt Z-20.1-64 / Austrian Approval BMVIT-327.120/0054-IV/ST2/2011
DYWIDAG Strand Anchors

Technical Data

DYWIDAG Prestressing Steel, 140 mm² Ø 15.3 mm (0.6") Strand

<table>
<thead>
<tr>
<th>Number</th>
<th>Cross-sectional area</th>
<th>Weight</th>
<th>Y1770 Standard</th>
<th>Y1860 High Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A [mm²]</td>
<td>Fp0,1k [kN]</td>
<td>Fpk [kN]</td>
<td>Approval</td>
</tr>
<tr>
<td>1</td>
<td>140</td>
<td>218</td>
<td>248</td>
<td>○</td>
</tr>
<tr>
<td>2</td>
<td>280</td>
<td>437</td>
<td>496</td>
<td>○</td>
</tr>
<tr>
<td>3</td>
<td>420</td>
<td>655</td>
<td>743</td>
<td>○</td>
</tr>
<tr>
<td>4</td>
<td>560</td>
<td>874</td>
<td>991</td>
<td>○</td>
</tr>
<tr>
<td>5</td>
<td>700</td>
<td>1,092</td>
<td>1,239</td>
<td>○</td>
</tr>
<tr>
<td>6</td>
<td>840</td>
<td>1,310</td>
<td>1,487</td>
<td>○</td>
</tr>
<tr>
<td>7</td>
<td>980</td>
<td>1,529</td>
<td>1,735</td>
<td>○</td>
</tr>
<tr>
<td>8</td>
<td>1,120</td>
<td>1,747</td>
<td>1,982</td>
<td>○</td>
</tr>
<tr>
<td>9</td>
<td>1,260</td>
<td>1,966</td>
<td>2,230</td>
<td>○</td>
</tr>
<tr>
<td>10</td>
<td>1,400</td>
<td>2,184</td>
<td>2,478</td>
<td>○</td>
</tr>
<tr>
<td>11</td>
<td>1,540</td>
<td>2,402</td>
<td>2,726</td>
<td>○</td>
</tr>
<tr>
<td>12</td>
<td>1,680</td>
<td>2,621</td>
<td>2,974</td>
<td>○</td>
</tr>
<tr>
<td>13</td>
<td>1,820</td>
<td>2,839</td>
<td>3,221</td>
<td>○</td>
</tr>
<tr>
<td>14</td>
<td>1,960</td>
<td>3,058</td>
<td>3,469</td>
<td>○</td>
</tr>
<tr>
<td>15</td>
<td>2,100</td>
<td>3,276</td>
<td>3,717</td>
<td>○</td>
</tr>
<tr>
<td>16</td>
<td>2,240</td>
<td>3,494</td>
<td>3,965</td>
<td>○</td>
</tr>
<tr>
<td>17</td>
<td>2,380</td>
<td>3,713</td>
<td>4,213</td>
<td>○</td>
</tr>
<tr>
<td>18</td>
<td>2,520</td>
<td>3,931</td>
<td>4,460</td>
<td>○</td>
</tr>
<tr>
<td>19</td>
<td>2,660</td>
<td>4,150</td>
<td>4,708</td>
<td>○</td>
</tr>
<tr>
<td>20</td>
<td>2,800</td>
<td>4,388</td>
<td>4,956</td>
<td>○</td>
</tr>
<tr>
<td>21</td>
<td>2,940</td>
<td>4,680</td>
<td>5,204</td>
<td>○</td>
</tr>
<tr>
<td>22</td>
<td>3,080</td>
<td>4,885</td>
<td>5,452</td>
<td>○</td>
</tr>
</tbody>
</table>

DYWIDAG Prestressing Steel, 150 mm² Ø 15.7 mm (0.62") Strand

<table>
<thead>
<tr>
<th>Number</th>
<th>Cross-sectional area</th>
<th>Weight</th>
<th>Y1770 Standard</th>
<th>Y1860 High Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A [mm²]</td>
<td>Fp0,1k [kN]</td>
<td>Fpk [kN]</td>
<td>Approval</td>
</tr>
<tr>
<td>1</td>
<td>150</td>
<td>234</td>
<td>266</td>
<td>○</td>
</tr>
<tr>
<td>2</td>
<td>300</td>
<td>468</td>
<td>531</td>
<td>○</td>
</tr>
<tr>
<td>3</td>
<td>450</td>
<td>702</td>
<td>797</td>
<td>○</td>
</tr>
<tr>
<td>4</td>
<td>600</td>
<td>963</td>
<td>1,062</td>
<td>○</td>
</tr>
<tr>
<td>5</td>
<td>750</td>
<td>1,170</td>
<td>1,328</td>
<td>○</td>
</tr>
<tr>
<td>6</td>
<td>900</td>
<td>1,404</td>
<td>1,593</td>
<td>○</td>
</tr>
<tr>
<td>7</td>
<td>1,050</td>
<td>1,638</td>
<td>1,859</td>
<td>○</td>
</tr>
<tr>
<td>8</td>
<td>1,200</td>
<td>1,872</td>
<td>2,124</td>
<td>○</td>
</tr>
<tr>
<td>9</td>
<td>1,350</td>
<td>2,106</td>
<td>2,390</td>
<td>○</td>
</tr>
<tr>
<td>10</td>
<td>1,500</td>
<td>2,340</td>
<td>2,655</td>
<td>○</td>
</tr>
<tr>
<td>11</td>
<td>1,650</td>
<td>2,574</td>
<td>2,921</td>
<td>○</td>
</tr>
<tr>
<td>12</td>
<td>1,800</td>
<td>2,808</td>
<td>3,186</td>
<td>○</td>
</tr>
<tr>
<td>13</td>
<td>1,950</td>
<td>3,042</td>
<td>3,452</td>
<td>○</td>
</tr>
<tr>
<td>14</td>
<td>2,100</td>
<td>3,276</td>
<td>3,717</td>
<td>○</td>
</tr>
<tr>
<td>15</td>
<td>2,250</td>
<td>3,510</td>
<td>3,983</td>
<td>○</td>
</tr>
<tr>
<td>16</td>
<td>2,400</td>
<td>3,744</td>
<td>4,248</td>
<td>○</td>
</tr>
<tr>
<td>17</td>
<td>2,550</td>
<td>3,978</td>
<td>4,514</td>
<td>○</td>
</tr>
<tr>
<td>18</td>
<td>2,700</td>
<td>4,212</td>
<td>4,779</td>
<td>○</td>
</tr>
<tr>
<td>19</td>
<td>2,850</td>
<td>4,446</td>
<td>5,045</td>
<td>○</td>
</tr>
<tr>
<td>20</td>
<td>3,000</td>
<td>4,680</td>
<td>5,310</td>
<td>○</td>
</tr>
<tr>
<td>21</td>
<td>3,150</td>
<td>4,914</td>
<td>5,576</td>
<td>○</td>
</tr>
<tr>
<td>22</td>
<td>3,300</td>
<td>5,148</td>
<td>5,841</td>
<td>○</td>
</tr>
</tbody>
</table>

○ Germany: Z-20.1-53 SUSPA Rock Anchors
× Germany: Z-20.1-64 SUSPA Compact Anchors
△ Austria: BMVIT-327.120/0054-IV/ST2/2011

Additional Information

German Approval DIBt Z-20.1-53 / DIBt Z-20.1-64 / Austrian Approval BMVIT-327.120/0054-IV/ST2/2011
DYWIDAG Strand Anchors

Permanent (DCP) Anchors
- Long-lasting system for permanent use (more than 100 years)
- DYWIDAG Strand Post-Tensioning System Anchor components
- Bonded length can be pregrouted at the factory – partial grouting is also possible
- Approved, Double Corrosion Protection (DCP) achieved by strands that are greased, individually sheathed and covered by one corrugated sheathing at the factory

Fields of Application
- Permanent tiebacks
- Uplift control
- Positional stability
- Rock stabilization

Temporary Anchor
- Temporary System for preliminary use of up to two years
- Extended use after prior agreement of involved experts
- Individual sheathing can be tightly sealed to the anchor head
- DYWIDAG Strand Post-Tensioning System Anchor components
- Can be designed for pressing water

Fields of Application
- Excavations
- Temporary tiebacks
- Stabilization of states of construction

Additional Information
German Approval DIBt Z-20.1-53 / DIBt Z-20.1-64 / Austrian Approval BMVIT-327.120/0054-IV/ST2/2011
DYWIDAG Strand Anchors

Temporary Anchor with Removable Free Length
- Anchor is partly removable – only the bonded length remains in the soil
- Slender system – high forces despite small boreholes
- Predetermined breaking point at each strand in the transition from bonded to free length – weakened strand

Fields of Application
- Excavations
- Temporary tiebacks
- Stabilization of states of construction
- Intra-urban construction

Permanent Anchor with Double Sheathing - TWIN-Corr System
- Long-lasting system for permanent use (more than 100 years)
- Double Corrosion Protection (DCP) achieved by strands that are greased, individually sheathed and covered by one corrugated sheathing at the factory

Fields of Application
- Permanent tiebacks
- Uplift control
- Positional stability
- Rock stabilization

Additional Information
German Approval DIBt Z-20.1-53 / DIBt Z-20.1-64 / Austrian Approval BMVIT-327.120/0054-IV/ST2/2011
DYWIDAG Strand Anchors

Electrically Testable Permanent Anchors – El-Iso System
- Long-lasting system for permanent use (more than 100 years)
- By uncoupling the anchor head and the tendon from the anchor plate, a resistance test from the anchor to the soil can be carried out – the intactness of the corrosion protection sheathing can be tested permanently and at any point of time by resistance tests
- Fulfils SIA requirements
- Special design also applicable for stray currents (railway)

Fields of Application
- Permanent tiebacks
- Uplift control
- Positional stability
- Rock stabilization
- Applicable for stray currents

Permanent Anchors with Multiple Head
- Long-lasting system for permanent use (more than 100 years)
- Several standardized permanent strand anchors can be bundled and anchored in one borehole – the transition to the anchor head is specially designed so that all strands end in a single anchorage
- Thanks to the preassembly of standard types in the factory, larger sizes can be manufactured quickly and easily
- High standards of quality
- Patented DYWIDAG System

Fields of Application
- Dam reinforcement
- Permanent tiebacks
- Uplift control
- Positional stability
- Rock stabilization
- Peak performance anchor

Additional Information
German Approval DiBt Z-20.1-53 / DiBt Z-20.1-64 / Austrian Approval BMVIT-327.120/0054-IV/ST2/2011
First Use of DYWIDAG Strand Anchors in Bukarest, Romania

Owner Raiffeisen Evolution, Austria +++ Contractor STRABAG SRL, Romania +++ Subcontractor Drilling Work Züblin SRL, Romania +++
Engineers Dipl.-Ing. Kurt Ströhle ZT GmbH, Austria; STROEHLE ENGINEERING SRL, Romania +++ Executing Company Züblin Romania SRL, Romania

DSI Unit DYWIDAG-Systems International GmbH, Austria
DSI Services Production, Supply, Installation, Test Installation, Technical Support
DSI Products supplied 3,765m, replaceable DYWIDAG Strand Anchors, 7-0.62"; 151m, DYWIDAG Strand Anchors, 9-0.62", with 16 anchor heads, 5 load cells with 1,250kN; rental of the complete tensioning equipment

New Ways for Europe: Pan-European Corridor 5, Slovenia

Owner DARS d.d., Ljubljana, Slovenia +++ Contractor SCT d.d., Ljubljana, Slovenia

DSI Unit DYWIDAG-Systems International GmbH, Headquarter Operations, Germany
DSI Services Production and Supply
DSI Products supplied 850, Type 4-0.62" Electrically Isolated Permanent DYWIDAG Strand Anchors with 3 or 4 strands and Type 7-0.62" anchors with 5 strands; grouting and stressing equipment
References DYWIDAG Strand Anchors

Stabilization of Pier 70, A10 Tauern Motorway, Austria

Owner ASFINAG BAU MANAGEMENT GMBH, Austria +++ Engineers SCHIMETTA CONSULT, Austria

DYWIDAG Strand Anchors stabilize Europe’s largest Harbor in Rotterdam, Netherlands

Owner Havenbedrijf Rotterdam N.V. (Port of Rotterdam), Netherlands +++ General Contractor PUMA JV, consisting of Koninklijke Boskalis Westminster N.V. and Van Oord N.V., both Netherlands +++ Subcontractor Quay Walls BAVO JV, consisting of BAM Civiel B.V. and Van Hattum en Blankenvoort, both Netherlands +++ Architect Quay Walls BAM Infraconsult B.V., Netherlands

DYWIDAG-Systems International GmbH, Austria

DSI Services Production and Supply

DSI Products supplied 10, 8-0.62” Permanent DYWIDAG Strand Anchors, length: approx. 80m

DSI Unit DYWIDAG-Systems International B.V., Netherlands

DSI Services Design, Production, Supply and Installation

DSI Products supplied 360, unbounded horizontal DYWIDAG Strand Anchors (500t) with MA Anchorages
References DYWIDAG Strand Anchors

Strengthening of Roanoke Rapids Dam using DYWIDAG Strand Anchors and DYNA Force® Sensors, USA

Owner Dominion North Carolina Power, USA +++ General Contractor Brayman Construction Corporation, USA +++
Engineers HDR/DTA, Inc., USA

DSI Unit DYWIDAG-Systems International USA Inc., BU Geotechnics, USA
DSI Services Production and Supply
DSI Products supplied restressable, epoxy coated 30-0.6” DYWIDAG Strand Anchors; 15 DYNA Force® Sensors

Permanent DYWIDAG Strand Anchors for Changuinola Dam, Panama

Owner AES Changuinola S.A., Panama +++ General Contractor Changuinola Civil Works Joint Venture CCWJV, consisting of: E. Pihl & Søn A.S. and MT Højgaard A/S, both Denmark; Alstom GmbH, Germany +++ Anchor Designer MD & G Engineers, South Africa

DSI Unit DYWIDAG-Systems International USA Inc., BU Geotechnics, USA
DSI Services Production, Supply and Technical Support
DSI Products supplied 43, restressable, double corrosion protected (DCP) 12-0.6” DYWIDAG Strand Anchors; 48, DYNA Force® Sensors; equipment
Basic Concept

GEW® and GEW® Plus Piles are micropiles in accordance with DIN 4128 and EN 14199. Usually, they are not tensioned and act as a passive foundation system. A GEW® Threadbar is inserted into a borehole with a maximum diameter of 300mm and centered using a spacer. Afterwards, the borehole is filled or pressure grouted with cement mortar from the bottom up. The grout simultaneously serves for transferring forces to the soil by skin friction and as standard corrosion protection (SCP). Like in solid construction, the alkaline environment of the surrounding cement stone coverage is used for protecting the reinforcing steel. If the cement stone cover does not offer sufficient protection in case of aggressive foundation soil or ground water, the GEW® Pile is also available with double corrosion protection (DCP). The steel tendon is clad in a plastic corrugated sheathing and the annular space is grouted at the factory.

This design is especially used in case of tensile forces, for example in permanent uplift control, because cracks in the coverage can decrease the passivation effect of the cement stone.

Fields of Application

- Foundation
- Uplift control
- Baseplates
- Positional stability
- Dam construction

Key Features

- Threadbars with proven coarse GEW® Thread that is suitable for on-site use – threadability even in extreme conditions
- Thread along the entire length
- Lengths can be flexibly adjusted on site
- Approved for absorbing tensile, compression, and alternating loads
- Excellent force / borehole ratio
- Space saving installation
- Compact, light equipment
- Various steel grades
 - Robust, weldable GEW® Bar
 - GEW® Plus Bars for ultimate wear
- For increasing skin friction, GEW® and GEW® Plus Piles can be equipped with a posterior grouting system
- Optimum load transfer in concrete structures via the anchoring elements
- Especially small pile distances can be realized using special splitting reinforcement
- Multibar assembly is possible when subject to extreme loads

Additional Information

German Approval DIBt Z-32.1-2 / DIBt Z-32.1-9 / Austrian Approval BMVIT-327.120/0017-II/ST2/2007
Technical Data

GEW® Pile B500B & S555/700

<table>
<thead>
<tr>
<th>Nominal diameter Ø [mm]</th>
<th>Yield strength / tensile strength $f_{0,2k}/f_{tk}$ [N/mm²]</th>
<th>Cross-sectional area A [mm²]</th>
<th>Load at yield F_{yk} [kN]</th>
<th>Ultimate load F_{tk} [kN]</th>
<th>Weight [kg/m]</th>
<th>Weight DCP [kg/m]</th>
<th>Approval</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>500/550</td>
<td>314</td>
<td>157</td>
<td>173</td>
<td>2.47</td>
<td>5.9</td>
<td>❑</td>
</tr>
<tr>
<td>25</td>
<td>500/550</td>
<td>491</td>
<td>245</td>
<td>270</td>
<td>3.85</td>
<td>7.0</td>
<td>❑</td>
</tr>
<tr>
<td>28</td>
<td>500/550</td>
<td>616</td>
<td>308</td>
<td>339</td>
<td>4.83</td>
<td>8.6</td>
<td>❑</td>
</tr>
<tr>
<td>32</td>
<td>500/550</td>
<td>804</td>
<td>402</td>
<td>442</td>
<td>6.31</td>
<td>9.5</td>
<td>❑</td>
</tr>
<tr>
<td>40</td>
<td>500/550</td>
<td>1,257</td>
<td>628</td>
<td>691</td>
<td>9.86</td>
<td>13.6</td>
<td>❑</td>
</tr>
<tr>
<td>50</td>
<td>500/550</td>
<td>1,963</td>
<td>982</td>
<td>1,080</td>
<td>15.41</td>
<td>21.0</td>
<td>❑</td>
</tr>
<tr>
<td>63.5</td>
<td>555/700</td>
<td>3,167</td>
<td>1,758</td>
<td>2,217</td>
<td>24.86</td>
<td>32.4</td>
<td>△</td>
</tr>
</tbody>
</table>

GEW® Plus Pile S670/800

<table>
<thead>
<tr>
<th>Nominal diameter Ø [mm]</th>
<th>Yield strength / tensile strength $f_{0,2k}/f_{tk}$ [N/mm²]</th>
<th>Cross-sectional area A [mm²]</th>
<th>Load at yield F_{yk} [kN]</th>
<th>Ultimate load F_{tk} [kN]</th>
<th>Weight [kg/m]</th>
<th>Weight DCP [kg/m]</th>
<th>Approval</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>670/800</td>
<td>491</td>
<td>329</td>
<td>393</td>
<td>3.85</td>
<td>7.0</td>
<td>△</td>
</tr>
<tr>
<td>28</td>
<td>670/800</td>
<td>616</td>
<td>413</td>
<td>493</td>
<td>4.83</td>
<td>8.6</td>
<td>△</td>
</tr>
<tr>
<td>30</td>
<td>670/800</td>
<td>707</td>
<td>474</td>
<td>565</td>
<td>5.55</td>
<td>9.0</td>
<td>△</td>
</tr>
<tr>
<td>35</td>
<td>670/800</td>
<td>962</td>
<td>645</td>
<td>770</td>
<td>7.55</td>
<td>11.3</td>
<td>△</td>
</tr>
<tr>
<td>43</td>
<td>670/800</td>
<td>1,452</td>
<td>973</td>
<td>1,162</td>
<td>11.40</td>
<td>15.8</td>
<td>△</td>
</tr>
<tr>
<td>57.5</td>
<td>670/800</td>
<td>2,597</td>
<td>1,740</td>
<td>2,077</td>
<td>20.38</td>
<td>30.0</td>
<td>△</td>
</tr>
<tr>
<td>63.5</td>
<td>670/800</td>
<td>3,167</td>
<td>2,122</td>
<td>2,534</td>
<td>24.86</td>
<td>32.4</td>
<td>△</td>
</tr>
<tr>
<td>75</td>
<td>670/800</td>
<td>4,418</td>
<td>2,960</td>
<td>3,534</td>
<td>34.68</td>
<td>43.5</td>
<td>△</td>
</tr>
</tbody>
</table>

GEW® Pile B500B Multibar

<table>
<thead>
<tr>
<th>Nominal diameter Ø [Number x Ø]</th>
<th>Yield strength / tensile strength $f_{0,2k}/f_{tk}$ [N/mm²]</th>
<th>Cross-sectional area A [mm²]</th>
<th>Load at yield F_{yk} [kN]</th>
<th>Ultimate load F_{tk} [kN]</th>
<th>Weight [kg/m]</th>
<th>Weight DCP [kg/m]</th>
<th>Approval</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 x 32</td>
<td>500/550</td>
<td>2,413</td>
<td>1,206</td>
<td>1,327</td>
<td>18.9</td>
<td>28.5</td>
<td>❑</td>
</tr>
<tr>
<td>3 x 40</td>
<td>500/550</td>
<td>3,770</td>
<td>1,885</td>
<td>2,073</td>
<td>29.6</td>
<td>40.8</td>
<td>❑</td>
</tr>
<tr>
<td>3 x 50</td>
<td>500/550</td>
<td>5,890</td>
<td>2,945</td>
<td>3,240</td>
<td>46.2</td>
<td>63.0</td>
<td>❑</td>
</tr>
<tr>
<td>2 x 40</td>
<td>500/550</td>
<td>2,513</td>
<td>1,257</td>
<td>1,382</td>
<td>19.7</td>
<td>27.2</td>
<td>❑</td>
</tr>
<tr>
<td>2 x 50</td>
<td>500/550</td>
<td>3,927</td>
<td>1,963</td>
<td>2,160</td>
<td>30.8</td>
<td>42.0</td>
<td>❑</td>
</tr>
<tr>
<td>1 x 40 & 1 x 50</td>
<td>500/550</td>
<td>3,220</td>
<td>1,610</td>
<td>1,771</td>
<td>25.3</td>
<td>34.6</td>
<td>❑</td>
</tr>
<tr>
<td>2 x 40 & 1 x 50</td>
<td>500/550</td>
<td>4,477</td>
<td>2,238</td>
<td>2,462</td>
<td>35.1</td>
<td>48.2</td>
<td>❑</td>
</tr>
<tr>
<td>1 x 40 & 2 x 50</td>
<td>500/550</td>
<td>5,184</td>
<td>2,592</td>
<td>2,851</td>
<td>40.7</td>
<td>55.6</td>
<td>❑</td>
</tr>
</tbody>
</table>

- Germany: Z-32.1-2 Ø 20 - 50mm GEW® Pile
- Germany: Z-32.1-9 Ø 63.5mm GEW® Pile
- Austria: BMVIT-327.120/0017-II/ST 2/2007 Ø 25 - 63.5mm GEW® Plus Pile

Additional Information

German Approval DIBt Z-32.1-2 / DIBt Z-32.1-9 / Austrian Approval BMVIT-327.120/0017-II/ST2/2007
GEW® Pile System

Standard Corrosion Protection (SCP)
- Corrosion protection by cement stone coverage
- Service life independent of environmental conditions and direction of load
- Compression pile: permanent use (more than 100 years) in minor corrosiveness
- Can be used up to 2 years (DIW...) or up to 50 years (EN...) in low aggressivity if used as a tension and formating load pile
- Can be supplied spray or hot-dip galvanized
- Spacers center the tendon in the borehole and ensure the necessary coverage
- A variety of pile head variations can be supplied depending on applications
- Approved GEW® System components

Fields of Application
- Foundation
- Baseplates
- Reinforcement
- Underpinnings
- Mainly compression loads

GEW® Multibar assembly
- Used for extreme loads
- Reaction piles for test loading
- Larger boreholes

Examples for Pile Head Variations

Additional Information
German Approval DIBt Z-32.1-2 / DIBt Z-32.1-9 / Austrian Approval BMVIT-327.120/0017-II/ST2/2007
GEW® Pile System

Double Corrosion Protection (DCP)
- Double Corrosion Protection (DCP) achieved by grouted corrugated sheathing with controlled crack width
- Permanent use (more than 100 years) – independent of corrosiveness and direction of load
- Can be fitted with DYWIDAG post-injection system
- Slender system – small borehole
- A variety of pile head variations can be supplied depending on applications
- Approved GEW® System components

GEW® Multibar assembly
- Excellent system effectiveness
- Double corrosion protection

Fields of Application
- Uplift control
- Foundation
- Baseplates
- Reinforcement
- Underpinnings

Double Anchor Piece
- Staggered Anchors
- Coupler Connection

Staggered Coupler Connections

Additional Information
German Approval DIBt Z-32.1-2 / DIBt Z-32.1-9 /
Austrian Approval BMVIT-327.120/0017-II/ST2/2007
GEWI® Plus Piles stabilize Commercial Harbor: Kaiserschleuse Bremerhaven, Germany

Owner Bremenports GmbH & Co. KG, Bremerhaven, Germany ***

Client Neidhardt Grundbau GmbH, Hamburg, Germany ***

Contractor JV, consisting of Hochtief Construction AG, August Prien Bauunternehmung (GmbH & Co. KG), STRABAG AG and Gustav W. Rogge, all of them Bremen and Bremerhaven, Germany

DSI Unit DYWIDAG-Systems International GmbH, LU West, Germany

DSI Services Production and Supply

DSI Products supplied approx. 770, Ø 63.5mm GEWI® Plus Piles, half of which were Double Corrosion Protected

GEWI® Piles used for Important Train Connection from Munich to Verona, Austria

Owner ÖBB Infrastruktur Bau AG, Austria ***

Client Strabag AG Dir. IE, Austria ***

Contractor ZÜBLIN Spezialtiefbau Ges.m.b.H., Austria

DSI Unit DYWIDAG-Systems International GmbH, Austria

DSI Services Production and Supply

DSI Products supplied 1,910, GEWI® Piles; 1,394, DYWIDAG Strand Anchors with 3 to 9 strands
DSI Supplies Permanent GEWI® Anchors for Suspension Bridge in Oman

Owner: Ministry of Regional Municipalities & Water Resources, Ruwi, Oman
Contractor: STRABAG Oman LLC, Muscat, Oman
Engineers: Schlaich Bergermann und Partner, Stuttgart, Germany

DSI Unit: DYWIDAG-Systems International GmbH, LU West, Germany
DSI Services: Production, Supply, Installation and Test Installation
DSI Products supplied: 64, Ø 50mm permanent GEWI® Anchors

Permanent GEWI® Anchors stabilize modern Power Plant in Incheon City, South Korea

Owner: Korea South East Power Co., Ltd. (KOSEP), Korea
General Contractor: GS Engineering & Construction Co. Ltd, Korea
Subcontractor: Shinwoo Construction Co., Ltd., Korea
Engineers: Hyundai Engineering Co., Ltd., Korea

DSI Unit: DYWIDAG-Systems Korea Co. Ltd., Korea
DSI Services: Production and Supply
DSI Products supplied: 336, permanent double corrosion protected GEWI® Anchors
Basic Concept

DYWIDAG Soil Nailing is a passive system for stabilizing slopes and sidehill cuts or rock as well as for stabilizing construction pit walls if deformations are irrelevant.

The load-bearing system significantly differs from ground anchors (actively tensioned) and tensile piles. In the case of soil nailing, the load-bearing capacity of the complete soil is increased because it is consolidated by the soil nails.

The soil is nailed into secure areas of the slope located further inside the hill. Consequently, tensile and shear forces act on the nails. In order to achieve this effect, the nails can only be placed at certain, limited distances towards each other. The nails do not act individually, but as a complete nailing system.

For stabilizing the slope front, a slope face must be realized that is connected to the nails guaranteeing tensile strength. Shotcreting construction, precast concrete elements, mesh or geotextiles can be used for this type of slope face. If the slope is only slightly inclined, it can be revegetated afterwards to achieve a pleasing appearance.

GEW® Threadbars that are centered using spacers are installed into the boreholes. Afterwards, the borehole is filled with cement mortar from the bottom up along its complete length. The grout creates a force-fit connection via bond with the threadbar and skin friction inside the borehole.

Proof of this connection and the individual load-bearing capacity of a nail is provided by test loads and regular approval tests. Fabric tubes can be used for sealing the borehole walls in case of fragmented rock or if soil is extremely permeable.

Fields of Application
- Slope stabilization
- Embankment stabilization
- Excavations without special requirements
- Rock stabilization
- Fixation of rock fall mesh
- Avalanche barriers
- Fixation

Key Features
- Threadbars with proven coarse GEW® Thread that is suitable for on-site use – threadability even in extreme conditions
- Thread along the entire length – lengths can be flexibly adjusted on site
- Excellent force / borehole ratio
- Various steel grades
 - Robust, weldable GEW® Bar
 - GEW® Plus Bars for ultimate wear
- For increasing skin friction, GEW® and GEW® Plus Piles can be equipped with a posterior grouting system
- The system permits flexible adaptation to different embankment and slope face conditions

Addtional Information
Approval Germany DIBt Z-20.1-106 / Approval Austria BMVIT-327.120/0022-II/ST2/2006
Technical Data

GEWL® Soil Nail / Rock Bolt, B500B & S555/700 Threadbar

<table>
<thead>
<tr>
<th>Nominal diameter Ø</th>
<th>Yield strength / tensile strength (f_{0.2k}/f_{tk})</th>
<th>Cross-sectional area (A)</th>
<th>Load at yield (F_{yk})</th>
<th>Ultimate load (F_{ik})</th>
<th>Weight ([kg/m])</th>
<th>Weight DCP ([kg/m])</th>
<th>Approval</th>
</tr>
</thead>
<tbody>
<tr>
<td>[mm]</td>
<td>[N/mm²]</td>
<td>[mm²]</td>
<td>[kN]</td>
<td>[kN]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>500/550</td>
<td>201</td>
<td>101</td>
<td>111</td>
<td>1.58</td>
<td>5.2</td>
<td>○</td>
</tr>
<tr>
<td>20</td>
<td>500/550</td>
<td>314</td>
<td>157</td>
<td>173</td>
<td>2.47</td>
<td>5.9</td>
<td>○</td>
</tr>
<tr>
<td>25</td>
<td>500/550</td>
<td>491</td>
<td>245</td>
<td>270</td>
<td>3.85</td>
<td>7.0</td>
<td>○</td>
</tr>
<tr>
<td>28</td>
<td>500/550</td>
<td>616</td>
<td>308</td>
<td>339</td>
<td>4.83</td>
<td>8.6</td>
<td>○</td>
</tr>
<tr>
<td>32</td>
<td>500/550</td>
<td>804</td>
<td>402</td>
<td>442</td>
<td>6.31</td>
<td>9.5</td>
<td>○</td>
</tr>
<tr>
<td>40</td>
<td>500/550</td>
<td>1,257</td>
<td>628</td>
<td>691</td>
<td>9.86</td>
<td>13.6</td>
<td>○</td>
</tr>
<tr>
<td>50</td>
<td>500/550</td>
<td>1,963</td>
<td>982</td>
<td>1,080</td>
<td>15.41</td>
<td>21.0</td>
<td>○</td>
</tr>
<tr>
<td>63.5</td>
<td>555/700</td>
<td>3,167</td>
<td>1,758</td>
<td>2,217</td>
<td>24.86</td>
<td>32.4</td>
<td>○</td>
</tr>
</tbody>
</table>

GEWL® Plus Soil Nail / Rock Bolt, S670/800 Threadbar

<table>
<thead>
<tr>
<th>Nominal diameter Ø</th>
<th>Yield strength / tensile strength (f_{0.2k}/f_{tk})</th>
<th>Cross-sectional area (A)</th>
<th>Load at yield (F_{yk})</th>
<th>Ultimate load (F_{ik})</th>
<th>Weight ([kg/m])</th>
<th>Weight DCP ([kg/m])</th>
<th>Approval</th>
</tr>
</thead>
<tbody>
<tr>
<td>[mm]</td>
<td>[N/mm²]</td>
<td>[mm²]</td>
<td>[kN]</td>
<td>[kN]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>670/800</td>
<td>254</td>
<td>170</td>
<td>204</td>
<td>2.00</td>
<td>5.4</td>
<td>×</td>
</tr>
<tr>
<td>22</td>
<td>670/800</td>
<td>380</td>
<td>255</td>
<td>304</td>
<td>2.98</td>
<td>6.5</td>
<td>×</td>
</tr>
<tr>
<td>25</td>
<td>670/800</td>
<td>491</td>
<td>329</td>
<td>393</td>
<td>3.85</td>
<td>7.0</td>
<td>×</td>
</tr>
<tr>
<td>28</td>
<td>670/800</td>
<td>616</td>
<td>413</td>
<td>493</td>
<td>4.83</td>
<td>8.6</td>
<td>×</td>
</tr>
<tr>
<td>30</td>
<td>670/800</td>
<td>707</td>
<td>474</td>
<td>565</td>
<td>5.55</td>
<td>9.0</td>
<td>×</td>
</tr>
<tr>
<td>35</td>
<td>670/800</td>
<td>962</td>
<td>645</td>
<td>770</td>
<td>7.55</td>
<td>11.3</td>
<td>×</td>
</tr>
<tr>
<td>43</td>
<td>670/800</td>
<td>1,452</td>
<td>973</td>
<td>1,162</td>
<td>11.40</td>
<td>15.8</td>
<td>×</td>
</tr>
<tr>
<td>57.5</td>
<td>670/800</td>
<td>2,597</td>
<td>1,740</td>
<td>2,077</td>
<td>20.38</td>
<td>30.0</td>
<td>×</td>
</tr>
<tr>
<td>63.5</td>
<td>670/800</td>
<td>3,167</td>
<td>2,122</td>
<td>2,534</td>
<td>24.86</td>
<td>32.4</td>
<td>×</td>
</tr>
<tr>
<td>75</td>
<td>670/800</td>
<td>4,418</td>
<td>2,960</td>
<td>3,534</td>
<td>34.68</td>
<td>43.5</td>
<td>×</td>
</tr>
</tbody>
</table>

DYWIDAG Prestressing Steel Rock Bolts

<table>
<thead>
<tr>
<th>Nominal diameter Ø</th>
<th>Yield strength / tensile strength (f_{0.1k}/f_{pk})</th>
<th>Cross-sectional area (A)</th>
<th>Load at yield (F_{p0.1k})</th>
<th>Ultimate load (F_{pk})</th>
<th>Weight ([kg/m])</th>
<th>Weight DCP ([kg/m])</th>
<th>Approval</th>
</tr>
</thead>
<tbody>
<tr>
<td>[mm]</td>
<td>[N/mm²]</td>
<td>[mm²]</td>
<td>[kN]</td>
<td>[kN]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>900/1.100</td>
<td>177</td>
<td>159</td>
<td>195</td>
<td>1.39</td>
<td>–</td>
<td>△</td>
</tr>
<tr>
<td>26.5</td>
<td>950/1.050</td>
<td>552</td>
<td>525</td>
<td>580</td>
<td>4.48</td>
<td>7.4</td>
<td>△</td>
</tr>
<tr>
<td>32</td>
<td>950/1.050</td>
<td>804</td>
<td>760</td>
<td>845</td>
<td>6.53</td>
<td>9.8</td>
<td>△</td>
</tr>
</tbody>
</table>

○ Germany: Z-20.1-106 DYWIDAG Soil Nailing System
× Austria: BMVIT-327.120/0022-II/ST 2/ GEWL® Plus Soil Nail
△ Germany: Z-20.1-17 Permanent DYWIDAG Bar Anchor

Additional Information

German Approval DIBt Z-20.1-106 / Austrian Approval BMVIT-327.120/0022-II/ST2/2006
DYWIDAG Soil Nails

DCP Soil Nail / Permanent Soil Nail
- Permanent use (more than 100 years)
- Double Corrosion Protection (DCP) achieved by factory grouted corrugated sheathing along the entire soil nail length with controlled crack width

Fields of Application
- Slope stabilization
- Embankment stabilization
- Excavations without special requirements
- Rock stabilization
- Fixation of rock fall mesh
- Avalanche barriers
- Fixation

Short Term Soil Nail / Temporary Soil Nail
- Temporary use of up to two years
- Extended use after prior agreement of involved experts
- Galvanized version available

Fields of Application
- Temporary slope stabilization
- Temporary embankment stabilization
- Stabilisation of states of construction
- Excavations without special requirements

Additional Information
German Approval DIBt Z-20.1-106 / Austrian Approval BMVIT-327.120/0022-II/ST2/2006
Summer Holidays without Traffic Jams: DYWIDAG Systems stabilize Autostrada Adriatica, Italy

Owner Autostrade per l’Italia Spa, Italy +++ Contractor Pentapoli S.c.a.r.l. – Imola, Italy +++ Consulting Engineer SPEA Ingegneria Europe, Italy

DSI Unit DYWIT S.P.A., Italy
DSI Services Production, Supply and Technical Support
DSI Products double corrosion protected Ø 26.5mm DYWIDAG Soil Nails; Ø 36 and 40mm DYWIDAG Bar Anchors; rental of equipment

Brenner Expressway - Slope Protection using Double Corrosion Protected GEWI® Soil Nails, Austria

Owner ASFINAG, Austria +++ Main Contractor Grund- Pfahl und Sonderbau GmbH, Austria

DSI Unit DYWIDAG-Systems International GmbH, Austria
DSI Services Production and Supply
DSI Products supplied 12,000m, permanent GEWI® Soil Nails with double corrosion protection; 400 pcs. in lengths varying from 25 to 38m
DYWIDAG Rock Bolts

SN Anchors / Fully Grouted Rock Bolt
- Steel tendon is grouted along its entire length
- Galvanized version available
- Excellent force / borehole ratio

Fields of Application
- Ground support
- Rock stabilization
- Anchorages in rock
- Rock and soil

Expansion Shell Anchors / Rock Bolts with Expansion Shell
- Extremely fast and easy installation
- Immediate load bearing capacity in the borehole
- Galvanized version available
- Retensionable
- Various angle compensation designs available
- Posterior grouting is possible – increased load bearing capacity and durability

Fields of Application
- Face bolts
- Ground support
- Roof support
- Medium hard to hard rock
- Potash and salt

Additional Information
German Approval DIBt Z-20.1-106 / Austrian Approval BMVIT-327.120/0022-II/ST2/2006
Rock Face Stabilized using GEWI® Rock Bolts, France

Owner City of Marseille, France
General Contractor SIMECO, Simiane Collongue, France

DSI Unit DSI-Ar téon, France
DSI Services Supply
DSI Products supplied 455, GEWI® Rock Bolts incl. accessories; 1,600m², of protective mesh; 1,000m, of strand

New York Step-Street Stabilized Using GEWI® Rock Bolts, USA

Owner City of New York, Department of Design and Construction, USA
General Contractor LAWS Construction, Pleasantville, USA
Contractor JANOD Construction Inc., USA
Engineers Langan Engineering & Environmental Services, USA

DSI Unit DYWIDAG-Systems International USA Inc., USA
DSI Services Supply
DSI Products supplied #8 grade 75: S 520/690N/mm² epoxy-coated GEWI® Rock Bolts incl. accessories: hex nuts, eyebolts and anchor plates
Basic Concept

The DYWI® Drill Hollow Bar System combines the geotechnical load-bearing system with the creation of a borehole. Thanks to the self-drilling hollow bar system with simultaneous grout flushing, the installation procedure can be decisively eased and shortened.

The DYWI® Drill Hollow Bar serves as a drill rod. It is fitted with a lost drill bit at the top that can be adapted to different soil conditions. After each single section of 1 to 6m, the subsequent bar is coupled to the previously installed segment.

At the final stage of drilling, cement mortar is injected into the hollow core of the bar using an injection adapter that is mounted at the drilling unit. The cement mortar exits at the bottom end through the flushing opening in the drill bit. The grout flushing simultaneously serves as slurry to stabilize the borehole and ensures the efficient retroflush of the borehole cuttings.

Once the required installation length has been reached, the grouting unit is switched to grouting mortar because it reaches higher compression strengths and thus ensures better load-bearing capacities. The hollow bar now serves as a steel tendon and can be used both as a soil nail or rock bolt and as a micropile.

DYWI® Drill Hollow Bars are produced in-house in our Center of Competence for Hollow Bars (Pasching, Austria).

The comprehensive DYWI® Drill Hollow Bar System product range offers tendons with ultimate loads from 210kN to 1,900kN including all system components such as drill bits for all soil conditions, couplers, spacers and anchor heads. Additional installation tools such as injection adapters or mortar mixers / pumps are constantly on stock or can be adapted and produced customized or adjusted to job site requirements on short notice.

Fields of Application
- Slope, embankment and rock stabilization
- Excavations without special requirements
- Fixation of rock fall mesh
- Avalanche barriers
- Foundation
- Baseplates

Key Features
- The tendon simultaneously serves as a drill rod
- Extremely fast installation because borehole drilling is made redundant by simultaneous drilling and grouting
- Compact equipment – space saving installation
- Drill bits are available for all varieties of soil and rock
- Can be used as a nail or a pile – many head varieties are available

Additional Information
German Approval DIBt Z-14.4-674 and Z-34.13-208 / Austrian Approval BMVT-327.120/0010-IV/ST2/2012 / European Approval ETA-12/0603
DYWI® Drill Hollow Bar System

Short Term Bolt / Temporary Bolt

- Temporary use of up to two years
- Extended use of up to 50 years after prior agreement of involved experts
- Galvanized design and Duplex Coating available

Fields of Application

- Temporary slope stabilization
- Temporary embankment stabilization
- Stabilisation of states of construction
- Excavations without special requirements

Technical Data

<table>
<thead>
<tr>
<th>Type</th>
<th>Cross-sectional area A [mm²]</th>
<th>Load at yield F_{yk} [kN]</th>
<th>Ultimate load F_{tk} [kN]</th>
<th>Weight [kg/m]</th>
<th>Approval</th>
</tr>
</thead>
<tbody>
<tr>
<td>R32-210 (R32L)</td>
<td>340</td>
<td>160</td>
<td>210</td>
<td>2.65</td>
<td>O X Δ</td>
</tr>
<tr>
<td>R32-250</td>
<td>370</td>
<td>190</td>
<td>250</td>
<td>2.90</td>
<td>O X Δ</td>
</tr>
<tr>
<td>R32-280 (R32N)</td>
<td>410</td>
<td>220</td>
<td>280</td>
<td>3.20</td>
<td>O X Δ</td>
</tr>
<tr>
<td>R32-320</td>
<td>470</td>
<td>250</td>
<td>320</td>
<td>3.70</td>
<td>O X Δ</td>
</tr>
<tr>
<td>R32-360 (R32S)</td>
<td>510</td>
<td>280</td>
<td>360</td>
<td>4.00</td>
<td>O X Δ</td>
</tr>
<tr>
<td>R32-400</td>
<td>560</td>
<td>330</td>
<td>400</td>
<td>4.40</td>
<td>O X Δ</td>
</tr>
<tr>
<td>R38-420</td>
<td>660</td>
<td>350</td>
<td>420</td>
<td>5.15</td>
<td>O X Δ</td>
</tr>
<tr>
<td>R38-500 (R38N)</td>
<td>750</td>
<td>400</td>
<td>500</td>
<td>5.85</td>
<td>O X Δ</td>
</tr>
<tr>
<td>R38-550</td>
<td>800</td>
<td>450</td>
<td>550</td>
<td>6.25</td>
<td>O X Δ</td>
</tr>
<tr>
<td>R51-550 (R51L)</td>
<td>890</td>
<td>450</td>
<td>550</td>
<td>6.95</td>
<td>O X Δ</td>
</tr>
<tr>
<td>R51-660</td>
<td>970</td>
<td>540</td>
<td>660</td>
<td>7.65</td>
<td>O X Δ</td>
</tr>
<tr>
<td>R51-800 (R51N)</td>
<td>1,150</td>
<td>640</td>
<td>800</td>
<td>9.00</td>
<td>O X Δ</td>
</tr>
<tr>
<td>T76-1200 (T76L)</td>
<td>1,610</td>
<td>1,000</td>
<td>1,200</td>
<td>12.60</td>
<td>O X Δ</td>
</tr>
<tr>
<td>T76-1600 (T76N)</td>
<td>1,990</td>
<td>1,200</td>
<td>1,600</td>
<td>15.60</td>
<td>O X Δ</td>
</tr>
<tr>
<td>T76-1900 (T76S)</td>
<td>2,360</td>
<td>1,500</td>
<td>1,900</td>
<td>18.50</td>
<td>O X Δ</td>
</tr>
</tbody>
</table>

Lengths of delivery L = 2/3/4/6m

- Germany: Z-14.4-674 & Z-34.13-208
- Austria: BMVT-327.120/0010-IV/ST2/2012
- Europe: ETA-12/0603

Additional Information

German Approval DIBt Z-14.4-674 und Z-34.13-208 / Austrian Approval BMVT-327.120/0010-IV/ST2/2012 / European Approval ETA-12/0603
Hollow Bars stabilize motorway construction near Porth, South Wales, Great Britain

Widening of the M1: Largest Soil Nailing Project in Great Britain
Vienna’s new Central Station:
DSI Austria contributes to Increased Mobility, Austria

Owner ÖBB (Federal Austrian Railway), Austria +++ General Contractor Grund- Pfahl- und Sonderbau GmbH and Porr GmbH, both Austria

DSI Unit DYWIDAG-Systems International GmbH, Austria
DSI Services Supply
DSI Products supplied approx. 10,000, Type R32 DYWI® Drill Hollow Bar Anchors with accessories

DYWI® Drill Anchors Stabilize Spectacular Tunneling Project in Lima: Vía Parque Rímac, Peru

Owner Municipalidad Metropolitana de Lima, Peru +++ Client Linea Amarilla S.A.C. (LAMSAC), Peru +++ General Contractor Construtora OAS Ltda., Peru +++ Subcontractor Geotechnics Mota-Engil Perú S.A., Peru

DSI Unit DSI Perú S.A.C., Peru
DSI Services Production and Supply
DSI Products supplied 62,000m, Type R51 DYWI® Drill Anchors
DYWI® Drill Hollow Bars Secure the Future of Granary Island in Gdansk, Poland

Owner: City of Gdanzk, Poland
General Contractor: Budimex S.A., Poland
Contractor Drilling: AEnergopol Szczecin S.A., Poland
Installation Subcontractor: Systems Geotechnique Ltd., Great Britain

DSI Unit: DYWIDAG-Systems International Sp. z o.o., Poland
DSI Scope: Production and Supply
DSI Products supplied: 1,036 pcs., Type T76-1200 DYWI® Drill Hollow Bar Anchors

Replacement of Railway Bridges across the Waetern and Aller Rivers in Verden, Germany

Owner: DB Netz AG Regionalbereich Nord, Germany
General Contractor: Max Bögl Bauunternehmung GmbH & Co. KG, Germany
Contractor: Jähnig GmbH Felssicherung & Zaunbau, Germany

DSI Unit: DYWIDAG-Systems International GmbH, BU Geotechnics, Germany
DSI Services: Production and Supply
DSI Products supplied: 210,200m, temporary Type R32-280 DYWI® Drill Soil Nails
References DYWI® Drill Hollow Bar System

Chasing the World Record: New Ski Jump in Planica, Slovenia

Owner Zavod za šport RS Planica, Slovenia +++ General Contractor Gradbeni Holding – GH D.D., Sloveniaa +++ Subcontractor MINERVO D.D., Slovenia

DSI Unit DYWIDAG-Systems International GmbH, Austria
DSI Services Production and Supply
DSI Products supplied Type R32, 250kN DYWI® Drill Hollow Bar Anchors and system accessories

DSI supplies DYWI® Drill Hollow Bars for new Transportation Corridor, Canada

Owner Government of British Columbia, Canada +++ General Contractor Fraser Transportation Group (FTG), Canada +++ Subcontractor Vancouver Shotcrete & Shoring Inc. / Belpacific Excavating & Shoring Limited Partnership, both Canada +++ Consulting Engineers Stantec Inc., Canada

DSI Unit DYWIDAG-Systems International Canada Ltd., Western Division, Canada
DSI Services Supply
DSI Products supplied 13,000m, Type T40N/16 DYWI® Drill Hollow Bars; 10,800m, Type R38N DYWI® Drill Hollow Bars with accessories
Basic Concept

DYWIDAG Bar Systems are perfectly suitable for transferring tensile forces and can therefore be used as tie rods.

Applications:
Sheet pile wall assembly in harbor and dam construction, cross-linkings, tying back walls in deadman structures, positional stability of joint connections, corner joints and foundations etc.

Due to the continuous GEW® Thread, the bars can be cut, anchored, and coupled at any point and be adjusted to on-site requirements. This makes the system completely independent of installation conditions on site as well as of existing deviations or alterations.

Depending on requirements and steel grades, a variety of corrosion protection methods can be used. This includes loss of section (sacrificial corrosion), galvanizing and coating, wrapping as well as double corrosion protection for highest requirements.

The matching system is chosen in close cooperation with our system specialists and is prefabricated at our plants if necessary.

Special system solutions such as articulated connections, couplers or tensionable connections can be provided for anchoring and connecting DYWIDAG Bars to the structure that needs to be stabilized. Our Technical Service is able to provide prompt customized solutions for special installation situations such as limited working space.

Key Features

- The complete system features coarse GEW® Thread that is suitable for on-site use
- GEW® and GEW® Plus steel grades are insensitive to embrittlement and stress corrosion cracking
- Various corrosion protection systems are applicable
- Comprehensive range of accessories for anchoring and coupling
- The system can be easily, quickly and safely adjusted to on-site conditions
- No limitation of installation tolerances
- Prestressing for deformation minimization
- Weldable bars and accessories
- Weight reduction of approx. 50% in comparison to S355 bars

Fields of Application

- Harbor / quay construction
- Dam and ramp construction
- Bracings
- Tie rods
- Tie backs
- Positional stability

Additional Information

DYWIDAG Tie Rods Brochure
Corrosion Protection Systems

Our Sales and Technical Services teams will gladly support you in choosing a suitable corrosion protection system.

- Double Corrosion Protection (DCP) in accordance with EN1537
- Shrinking with corrosion protection shrinking sleeves
- Wrapping with corrosion protection grease tape
- Epoxy-, PUR- or bitumen based coatings
- Hot-dip galvanizing
- Spray galvanizing
- Loss of section (sacrificial corrosion)

Loss of Section in Accordance with EAU and DIN EN 14199 (Bar Diameter – Loss of Thickness in mm)

<table>
<thead>
<tr>
<th>Aggressivity</th>
<th>Period of use</th>
<th>Short (up to 5 years)</th>
<th>Medium (50 years)</th>
<th>Long (100 years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>low</td>
<td></td>
<td>0.1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>medium</td>
<td></td>
<td>0.2</td>
<td>2</td>
<td>–</td>
</tr>
<tr>
<td>high</td>
<td></td>
<td>1</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Technical Data

GEW® B500B & S555/700 Threadbar

<table>
<thead>
<tr>
<th>Nominal diameter Ø [mm]</th>
<th>Yield strength / tensile strength $f_{0,2k} / f_{tk}$ [N/mm²]</th>
<th>Cross-sectional area A [mm²]</th>
<th>Load at yield F_{yk} [kN]</th>
<th>Ultimate load F_{tk} [kN]</th>
<th>Weight [kg/m]</th>
<th>Weight DCP [kg/m]</th>
<th>Approval</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>500/550</td>
<td>201</td>
<td>101</td>
<td>111</td>
<td>1.58</td>
<td>5.2</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>500/550</td>
<td>314</td>
<td>157</td>
<td>173</td>
<td>2.47</td>
<td>5.9</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>500/550</td>
<td>491</td>
<td>245</td>
<td>270</td>
<td>3.85</td>
<td>7.0</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>500/550</td>
<td>616</td>
<td>308</td>
<td>339</td>
<td>4.83</td>
<td>8.6</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>500/550</td>
<td>804</td>
<td>402</td>
<td>442</td>
<td>6.31</td>
<td>9.5</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>500/550</td>
<td>1,257</td>
<td>628</td>
<td>691</td>
<td>9.86</td>
<td>13.6</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>500/550</td>
<td>1,963</td>
<td>982</td>
<td>1,080</td>
<td>15.41</td>
<td>21.0</td>
<td></td>
</tr>
<tr>
<td>63.5</td>
<td>555/700</td>
<td>3,167</td>
<td>1,758</td>
<td>2,217</td>
<td>24.86</td>
<td>32.4</td>
<td></td>
</tr>
</tbody>
</table>

GEW® Plus S670/800 Threadbar

<table>
<thead>
<tr>
<th>Nominal diameter Ø [mm]</th>
<th>Yield strength / tensile strength $f_{0,2k} / f_{tk}$ [N/mm²]</th>
<th>Cross-sectional area A [mm²]</th>
<th>Load at yield F_{yk} [kN]</th>
<th>Ultimate load F_{tk} [kN]</th>
<th>Weight [kg/m]</th>
<th>Weight DCP [kg/m]</th>
<th>Approval</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>670/800</td>
<td>254</td>
<td>170</td>
<td>204</td>
<td>2.00</td>
<td>5.4</td>
<td>△</td>
</tr>
<tr>
<td>22</td>
<td>670/800</td>
<td>380</td>
<td>255</td>
<td>304</td>
<td>2.98</td>
<td>6.5</td>
<td>△</td>
</tr>
<tr>
<td>25</td>
<td>670/800</td>
<td>491</td>
<td>329</td>
<td>393</td>
<td>3.95</td>
<td>7.0</td>
<td>△</td>
</tr>
<tr>
<td>28</td>
<td>670/800</td>
<td>616</td>
<td>413</td>
<td>493</td>
<td>4.83</td>
<td>8.6</td>
<td>△</td>
</tr>
<tr>
<td>30</td>
<td>670/800</td>
<td>707</td>
<td>474</td>
<td>565</td>
<td>5.55</td>
<td>9.0</td>
<td>△</td>
</tr>
<tr>
<td>35</td>
<td>670/800</td>
<td>962</td>
<td>645</td>
<td>770</td>
<td>7.35</td>
<td>11.3</td>
<td>△</td>
</tr>
<tr>
<td>42</td>
<td>670/800</td>
<td>1,452</td>
<td>973</td>
<td>1,162</td>
<td>11.40</td>
<td>15.8</td>
<td>△</td>
</tr>
<tr>
<td>57.5</td>
<td>670/800</td>
<td>2,597</td>
<td>1,740</td>
<td>2,077</td>
<td>20.38</td>
<td>30.0</td>
<td>△</td>
</tr>
<tr>
<td>63.5</td>
<td>670/800</td>
<td>3,167</td>
<td>2,122</td>
<td>2,534</td>
<td>24.86</td>
<td>32.4</td>
<td>△</td>
</tr>
<tr>
<td>75</td>
<td>670/800</td>
<td>4,418</td>
<td>2,960</td>
<td>3,534</td>
<td>34.68</td>
<td>43.5</td>
<td>△</td>
</tr>
</tbody>
</table>

DYWIDAG Y1050H Prestressing Steel

<table>
<thead>
<tr>
<th>Nominal diameter Ø [mm]</th>
<th>Yield strength / tensile strength $f_{0,2k} / f_{tk}$ [N/mm²]</th>
<th>Cross-sectional area A [mm²]</th>
<th>Load at yield $F_{p0,1k}$ [kN]</th>
<th>Ultimate load F_{pk} [kN]</th>
<th>Weight [kg/m]</th>
<th>Weight DCP [kg/m]</th>
<th>Approval</th>
</tr>
</thead>
<tbody>
<tr>
<td>26.5</td>
<td>950/1,050</td>
<td>552</td>
<td>525</td>
<td>580</td>
<td>4.48</td>
<td>7.4</td>
<td>□</td>
</tr>
<tr>
<td>32</td>
<td>950/1,050</td>
<td>804</td>
<td>760</td>
<td>845</td>
<td>6.53</td>
<td>9.8</td>
<td>□</td>
</tr>
<tr>
<td>36</td>
<td>950/1,050</td>
<td>1,018</td>
<td>960</td>
<td>1,070</td>
<td>8.27</td>
<td>12.3</td>
<td>□</td>
</tr>
<tr>
<td>40</td>
<td>950/1,050</td>
<td>1,257</td>
<td>1,190</td>
<td>1,320</td>
<td>10.21</td>
<td>14.0</td>
<td>□</td>
</tr>
<tr>
<td>47</td>
<td>950/1,050</td>
<td>1,735</td>
<td>1,650</td>
<td>1,820</td>
<td>14.10</td>
<td>20.0</td>
<td>□</td>
</tr>
</tbody>
</table>

Germany: DIBt Z-20.1-17
Germany: DIBt Z-34.11-225
Austria: BMVIT-327.120/0034-II/ST2/2005
Austria: BMVIT-327.120/0034-IV/ST2/2011

Additional Information

DYWIDAG Tie Rods Brochure
DYWIDAG Tie Rods

Tie Rod Connections
Anchorages in different variations for steel and concrete structures
- Clevis connections
- Eye pieces
- Anchor pieces
- Articulated
- With angle compensation
- Self-aligning under load
- Tensionable
- Weldable
- Corrosion protected
- Counter-sunk
- Embedded in concrete

Couplers and Connections
Many variations
- Coupler
- Turnbuckle
- Strap connector
- Articulated
- Double articulation
- With length compensation
- Fitting coupler
- Tensionable
- Weldable
- Corrosion protected

Additional Information
DYWIDAG Tie Rods Brochure

Anchorages in Concrete or Drilled Pile with Articulated Connection

Articulated Connection with Sheet Pile Wall using Welding Plate and Clevis

Turnbuckle with Length Compensation

Double Strap Articulation with Eye Pieces and Exterior Straps
DYWIDAG Tie Rods

Waler Bolt
- Replaceable
- Weldable
- Additional segments and systems can be connected using couplers
- With angle compensation
- Corrosion protected

Additional segments and systems can be connected using couplers

Welded-in Waler Bolt
- Counter-sunk
- Inclined installation is possible
- Additional segments and systems can be connected using couplers
- Centrical load transfer on the center beam
- Easy and economical

Additional Information
DYWIDAG Tie Rods Brochure
Comfort and Design: The Marina d’Arechi, Italy

Owner: Gallozzi Group, Italy
General Contractor: Impresa Pietro Cidonio S.p.A., Italy
Architect (Marina Buildings): Santiago Calatrava, Spain

DSI Unit: DYWIT S.P.A., Italy
DYWIT Services: Supply
DYWIT Products supplied: 7,600m, double corrosion protected Ø 50mm DYWIDAG Tie Rods made of GEWI® steel

DYWIDAG Systems for US-American Base in Guam, Micronesia, USA

Owner: US Navy, Naval Base Guam, USA
General Contractor: Black Construction Corporation, Guam, USA
Architect-Engineers: Wilson Okamoto Corporation, Honolulu, Hawaii, USA

DSI Unit: DYWIDAG-Systems International USA Inc., USA
DSI Services: Supply
DSI Products supplied: approx. 8,000m (26,000ft.), of Tie Rods with Polyken tape wrap
GEWI® Tie Rods secure Sheet Piling for Quay Wall, Germany

Owner Hafenentwicklungsgesellschaft Rostock mbH, Germany +++ General Contractor JV Erweiterung LP60 consisting of Bauer Spezialtiefbau GmbH, and Heinrich Hirdes GmbH, both Germany +++ Engineers INRS-LACKNER AG, Germany

DSI Unit DYWIDAG-Systems International GmbH, Germany
DSI Services Supply
DSI Products supplied 46. GEWI® Tie Rods, Ø63.5 mm in lengths varying from 20-40m including GEWI® couplers; 78 waler bolts made of Ø 63.5mm GEWI® Bars

New Connecting Road in Sittingbourne enhances the Region’s Economic Development, Great Britain

Owner Kent County Council, Great Britain +++ Contractor Jackson Civil Engineering Group Ltd., Great Britain +++ Engineers Jacobs Engineering Group Inc., Great Britain

DSI Unit DYWIDAG-Systems International Ltd., Great Britain
DSI Services Supply
DSI Products supplied Ø 63.5mm GEWI® Tie Bar; Clevis Connections
Basic Concept

GEW® reinforcing steel is B500B steel in accordance with DIN 488 with rolled-on thread on both sides forming a special left-hand thread along the entire bar length. The GEW® System serves for coupling and anchoring these threadbars and has proven itself countless times during the last decades as an excellent connecting reinforcement on challenging jobsites.

There is no need for using overlap connections and overlapping joints: GEW® threaded reinforcing steel bars can be coupled directly and axially using couplers. The couplers are designed for transferring the calculational ultimate bar load with a safety factor of over 1.15 – all connections and design states can be realized as full joints independent of whether tensile, compression or alternating loads prevail.

Especially in heavily reinforced structural elements in which distances between individual reinforcing bars can be a problem, the GEW® System offers major advantages. Areas with double bar levels are no longer necessary and larger passageways for inserting vibrators and pouring the concrete mix are created so that the concrete quality is enhanced.

The GEW® System also achieves excellent results in the end anchorage area: The anchor lengths of the reinforcing bars can be reduced to a minimum using anchor pieces and plate anchorages, which significantly decreases the amount of steel and concrete that is needed.

Thanks to the coarse and extremely robust GEW® Thread, GEW® Threadbars are perfectly suitable for on-site use and can even be screwed when extremely dirty – the same applies to GEW® nuts.

In the course of time, the GEW® System has been continuously developed and optimized – a large range of products is available for almost any kind of application.

Fields of Application

- Connecting reinforcement
- Challenging coupling solutions
- Civil engineering
- Construction of power plants

Key Features

- Threadbars with proven coarse GEW® Thread that is suitable for on-site use – screwable even under extreme conditions
- Thread along the entire length; lengths can be flexibly adjusted on site
- Easy application – thread does not have to be cut on site
- Sufficient coverage can be easily achieved
- Only little space is required during installation
- There is no increase in reinforcement ratio in the connection and anchorage zones
- Approved by the building authorities

Additional Information

German Approvals DiBt Z-1.5-76 (Ø 12-32) and Z-1.5-149 (Ø 40-50)
The GEW® System – Connecting Reinforcement

Technical Data

GEW® B500B Reinforcing Steel Threadbar

<table>
<thead>
<tr>
<th>Nominal diameter</th>
<th>Yield strength / tensile strength f₀,₂k/f₀k [N/mm²]</th>
<th>Cross-sectional area A [mm²]</th>
<th>Load at yield F₀ₖ [kN]</th>
<th>Ultimate load F₀ₜ [kN]</th>
<th>Weight [kg/m]</th>
<th>Approval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ø mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>500/550</td>
<td>113</td>
<td>57</td>
<td>62</td>
<td>0.89</td>
<td>○</td>
</tr>
<tr>
<td>16</td>
<td>500/550</td>
<td>201</td>
<td>101</td>
<td>111</td>
<td>1.58</td>
<td>○</td>
</tr>
<tr>
<td>20</td>
<td>500/550</td>
<td>314</td>
<td>157</td>
<td>173</td>
<td>2.47</td>
<td>○</td>
</tr>
<tr>
<td>25</td>
<td>500/550</td>
<td>491</td>
<td>245</td>
<td>270</td>
<td>3.85</td>
<td>○</td>
</tr>
<tr>
<td>28</td>
<td>500/550</td>
<td>616</td>
<td>308</td>
<td>339</td>
<td>4.83</td>
<td>○</td>
</tr>
<tr>
<td>32</td>
<td>500/550</td>
<td>804</td>
<td>402</td>
<td>442</td>
<td>6.31</td>
<td>○</td>
</tr>
<tr>
<td>40</td>
<td>500/550</td>
<td>1,257</td>
<td>628</td>
<td>691</td>
<td>9.86</td>
<td>○</td>
</tr>
<tr>
<td>50</td>
<td>500/550</td>
<td>1,963</td>
<td>982</td>
<td>1,080</td>
<td>15.41</td>
<td>×</td>
</tr>
</tbody>
</table>

○ Germany: DIBt Z-1.5-76
× Germany: DIBt Z-1.5-149

Thanks to excellent characteristics, the GEW® Threadbar can be classified as a highly ductile bar (class B) in accordance with DIN 1045. It also fulfills all DIN EN 1992 (EC2) requirements.

The diagram shows that GEW® Threadbars clearly exceed the requirements for standard reinforcing steel. GEW® accessories cover all common solid construction connections and anchorage systems. The required equipment such as equipment for countering coupler connections and end anchorages is detailed in the equipment section (see page 55).

Additional Information

German Approvals DIBt Z-1.5-76 (Ø 12-32) and Z-1.5-149 (Ø 40-50)
The FLIMU® System – Connecting Reinforcement

Basic Concept
The extruded coupler splice – respectively, the FLIMU® system – has been developed especially for realizing reinforcing connections in large numbers or very limited space conditions.

When realizing a FLIMU® coupler splice, two reinforcing bars are connected by extruding a coupler that has been placed onto both ends of the reinforcing bars. A reducing ring is pushed over the coupler using a high amount of pressure.

The reducing ring significantly reduces the exterior diameter of the coupler and creates a force fit connection between rebar and coupler (extrusion process).

Both B500 reinforcing steel with normal threads in accordance with DIN 488 and GEW® reinforcing steel threadbar can be spliced using the FLIMU® system. This way, even reinforcing bars that have already been installed can be easily coupled to a GEW® connecting bar.

The FLIMU® system is also suitable for many similar reinforcing steel bars such as Austrian ARI and ARI-G. Suitability tests can be performed for special applications.

The corresponding extruding equipment has been kept slim on purpose in order to ensure an economic realization of the connections in very limited space and in areas with tight reinforcement layers. Up to 30 connections per hour are possible if installation is done professionally by trained personnel.

Key Features
- Bars do not have to be screwed
- Preliminary work at the bars is not required
- High installation performance
- Both threadbars and GEW® reinforcing bars can be coupled
- Space-saving installation – also for multilayer reinforcement
- The complete equipment and installation aids are on stock
- General building-authority approval for Ø 12 to 32mm

Fields of Application
- Connecting reinforcement
- Challenging coupling solutions
- Civil engineering
- Civil engineering

Additional Information
German Approval DIBt Z-1.5-150
The FLIMU® System – Connecting Reinforcement

Technical Data

FLIMU® System for B500 & GEWI® and ARI & ARI-G Reinforcing Steel

<table>
<thead>
<tr>
<th>Nominal diameter</th>
<th>Yield strength / tensile strength $f_{0.2k}/f_{tk}$ [N/mm²]</th>
<th>Cross-sectional area A [mm²]</th>
<th>Load at yield F_{yk} [kN]</th>
<th>Ultimate load F_{tk} [kN]</th>
<th>Weight [kg/m]</th>
<th>Approval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ø [mm]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>500/550 (D) 550/620 (A)</td>
<td>201</td>
<td>101</td>
<td>111</td>
<td>1.58</td>
<td>○</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>314</td>
<td>157</td>
<td>173</td>
<td>2.47</td>
<td>○</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>491</td>
<td>245</td>
<td>270</td>
<td>3.85</td>
<td>○</td>
</tr>
<tr>
<td>28</td>
<td></td>
<td>616</td>
<td>308</td>
<td>339</td>
<td>4.83</td>
<td>○</td>
</tr>
<tr>
<td>32</td>
<td></td>
<td>804</td>
<td>402</td>
<td>442</td>
<td>6.31</td>
<td>○</td>
</tr>
<tr>
<td>40</td>
<td></td>
<td>1,257</td>
<td>628</td>
<td>691</td>
<td>9.86</td>
<td>X</td>
</tr>
<tr>
<td>50</td>
<td></td>
<td>1,963</td>
<td>982</td>
<td>1,080</td>
<td>15.41</td>
<td>X</td>
</tr>
</tbody>
</table>

○ Germany: DIBt Z-1.5-150
X Austria: BMVIT 860.300/25-VI/7/92

Overview Extruders

<table>
<thead>
<tr>
<th>Extruder</th>
<th>Standard equipment for GEWI® Bars Ø [mm]</th>
<th>Hydraulic power unit</th>
<th>Weight [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 150</td>
<td>16 - 20</td>
<td>77-159</td>
<td>43</td>
</tr>
<tr>
<td>Type 250</td>
<td>16 - 28</td>
<td>77-159</td>
<td>75</td>
</tr>
<tr>
<td>Type 420</td>
<td>25 - 32</td>
<td>R13.3</td>
<td>206</td>
</tr>
<tr>
<td>Type 550</td>
<td>32 - 40</td>
<td>R13.3</td>
<td>225</td>
</tr>
<tr>
<td>Type 1000</td>
<td>50</td>
<td>R13.3</td>
<td>740</td>
</tr>
</tbody>
</table>

Additional Information

German Approval DIBt Z-1.5-150
FLIMU® System Convinces by Cost Effectiveness: Mittlerer Ring, Munich, Germany

Easy Application – simple Installation

Extruder in Use

High Installation Performance
On-site Service

Robust Equipment

Usable even in extremely tight Reinforcement Layers

Special Balancer in Use

Usable in rough Conditions

Owner Landeshauptstadt München, Baureferat, Germany +++ General Contractor Joint Venture Ingenieurbau LKP, Germany +++ Contractor W&F (Wayss & Freytag Ingenieurubau AG); Berger Bau, both Germany +++ Architect Baureferat München, HA Tiefbau und HA Ingenieurbau, Germany

DSI Unit DYWIDAG-Systems International GmbH, BU Geotechnics, Germany
DSI Services Production and Supply
DSI Products supplied approx. 35,000, Ø28mm FLIMU® couplers; approx. 20,000, Ø32mm FLIMU® couplers; rental of equipment
DYWIDAG Equipment

DYWIDAG Jacks

DYWIDAG Jacks are characterized by their robustness and multiple applications. Thanks to different interchange parts, the jacks can be adapted to different sizes of tendons. DYWIDAG Jacks are made of high-strength construction materials (steel and/or aluminum alloy).

The sealing and slide faces are precision finished, surface hardened and hard chrome plated. The exterior of the equipment is chromed or galvanized for protection against atmospheric influence. Consequently, all prerequisites for a long service life are fulfilled.

DYWIDAG Equipment is characterized by its robust design and has proven itself for decades in rough on-site use. In our internal workshop, the equipment is assembled, regularly maintained, checked and repaired quickly and economically if needed. Our high standards with regards to material, manufacturing quality and practicable application always ensure the availability of appropriate equipment at the right place.

Post-tensioning jacks are used for tensioning strands and bar anchors, tightening tie rods or carrying out test loads or proof tests on anchors, piles and nails. They are equipped with the matching mounting parts for each application.

Key Features

- Steel or aluminum design
- Low prices
- Extremely long-lasting in on-site use
- Maximum loads up to 15,000kN

Technical Data

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>HOZ 250</td>
<td>250</td>
<td>580</td>
<td>125</td>
<td>50</td>
<td>33</td>
<td>13</td>
<td>16 - 28</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 Mp</td>
<td>250</td>
<td>550</td>
<td>125</td>
<td>100</td>
<td>48</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60 Mp</td>
<td>600</td>
<td>600</td>
<td>190</td>
<td>60</td>
<td>60</td>
<td>45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>110 Mp</td>
<td>1,100</td>
<td>750</td>
<td>267</td>
<td>100</td>
<td>86</td>
<td>55</td>
<td>3 - 5</td>
<td>16 - 50</td>
<td>18 - 43</td>
<td>26.5 - 40.0</td>
<td></td>
</tr>
<tr>
<td>1500 kN</td>
<td>1,500</td>
<td>870</td>
<td>310</td>
<td>250</td>
<td>100</td>
<td>125</td>
<td>3 - 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HOZ 2000</td>
<td>2,000</td>
<td>880</td>
<td>325</td>
<td>150</td>
<td>140</td>
<td>210</td>
<td>63.5</td>
<td>57.5 - 63.5</td>
<td></td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>HOZ 3000</td>
<td>3,000</td>
<td>1,200</td>
<td>385</td>
<td>250</td>
<td>162</td>
<td>400</td>
<td>8 - 12</td>
<td></td>
<td></td>
<td>57 - 65</td>
<td></td>
</tr>
<tr>
<td>HOZ 5400</td>
<td>5,400</td>
<td>1,470</td>
<td>482</td>
<td>250</td>
<td>187</td>
<td>600</td>
<td>13 - 22</td>
<td></td>
<td></td>
<td>57 - 75</td>
<td></td>
</tr>
<tr>
<td>6800 kN</td>
<td>6,800</td>
<td>1,500</td>
<td>560</td>
<td>300</td>
<td>225</td>
<td>1,400</td>
<td>23 - 27</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9750 kN</td>
<td>9,750</td>
<td>1,600</td>
<td>680</td>
<td>300</td>
<td>260</td>
<td>2,000</td>
<td>28 - 37</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15000 kN</td>
<td>15,000</td>
<td>3,300</td>
<td>980</td>
<td>500</td>
<td>420</td>
<td>7,000</td>
<td>38 - 61</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1) for details regarding the recommended hydraulic power units, please see table at the bottom of page 53

Additional Information

Brochure / operating manuals

52
DYWIDAG Equipment

Hollow-Piston CFRP Cylinders

Carbon Fiber Reinforced Hollow-Piston (CFRP) Cylinders are an optimum alternative to conventional hollow-piston cylinders made of aluminum and steel with weight savings of 60% and more. In most cases, tensioning work can be carried out by one to two workers without the need for lifting tools.

Despite their light weight design, Hollow-Piston CFRP Cylinders are robust and durable and are suitable for tensioning and testing anchors. Thanks to a large variety of different accessories, they can be universally used.

Key Features

- Low weight
- Can be handled by a single person
- No need for lifting tools
- Fast application

Technical Data

<table>
<thead>
<tr>
<th>Jack Type</th>
<th>Height</th>
<th>Width</th>
<th>Stroke</th>
<th>Clear passage</th>
<th>Nominal stressing force</th>
<th>Weight</th>
<th>Strands</th>
<th>Strands</th>
<th>Standard equipment for</th>
<th>Reinforcing steel</th>
<th>Hydraulic power unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-HK-DZ 040-150-038</td>
<td>316</td>
<td>140</td>
<td>150</td>
<td>38</td>
<td>412</td>
<td>11.3</td>
<td>1</td>
<td>Ø 16 - 25</td>
<td>Ø 18 - 25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L-HK-DZ 080-200-080</td>
<td>382</td>
<td>190</td>
<td>200</td>
<td>80</td>
<td>832</td>
<td>20.7</td>
<td>3</td>
<td>Ø 16 - 40</td>
<td>Ø 18 - 35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L-HK-DZ 100-200-083</td>
<td>382</td>
<td>190</td>
<td>200</td>
<td>83</td>
<td>990</td>
<td>23.2</td>
<td>3 - 4</td>
<td>Ø 16 - 50</td>
<td>Ø 18 - 43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L-HK-DZ 120-180-090</td>
<td>362</td>
<td>215</td>
<td>180</td>
<td>90</td>
<td>1,175</td>
<td>25.3</td>
<td>3 - 7</td>
<td>Ø 16 - 50</td>
<td>Ø 18 - 43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L-HK-DZ 140-250-105</td>
<td>433</td>
<td>235</td>
<td>250</td>
<td>105</td>
<td>1,385</td>
<td>36.0</td>
<td>3 - 7</td>
<td>Ø 16 - 50</td>
<td>Ø 18 - 43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L-HK-DZ 170-250-105</td>
<td>447</td>
<td>260</td>
<td>250</td>
<td>110</td>
<td>1,781</td>
<td>52.1</td>
<td>5 - 9</td>
<td>Ø 16 - 50</td>
<td>Ø 18 - 43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L-HK-DZ 270-250-069</td>
<td>450</td>
<td>324</td>
<td>250</td>
<td>69</td>
<td>2,775</td>
<td>69.3</td>
<td>7 - 12</td>
<td>Ø 16 - 50</td>
<td>Ø 18 - 43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L-HK-DZ 400-250-100</td>
<td>481</td>
<td>354</td>
<td>250</td>
<td>100</td>
<td>4,089</td>
<td>93.0</td>
<td>7 - 12</td>
<td>Ø 16 - 50</td>
<td>Ø 18 - 43</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1) for details of the recommended hydraulic power units, please see table below

Recommended Hydraulic Power Units

<table>
<thead>
<tr>
<th>Number</th>
<th>Hydraulic power unit</th>
<th>Max. operating pressure [l/min]</th>
<th>Flow rate [l/min]</th>
<th>Oil filling [l]</th>
<th>Weight including oil filling [kg]</th>
<th>Dimensions L x W x H [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Manual pump P39</td>
<td>700</td>
<td>-</td>
<td>1</td>
<td>6</td>
<td>600 x 150 x 140</td>
</tr>
<tr>
<td>2</td>
<td>77-193</td>
<td>700</td>
<td>3</td>
<td>13</td>
<td>60</td>
<td>420 x 380 x 480</td>
</tr>
<tr>
<td>3</td>
<td>R 6.4</td>
<td>600</td>
<td>6.4</td>
<td>100</td>
<td>315</td>
<td>1,400 x 700 x 1,100</td>
</tr>
<tr>
<td>4</td>
<td>R 11.2</td>
<td>550/600</td>
<td>22.4/11.2</td>
<td>125</td>
<td>630</td>
<td>2,000 x 800 x 1,300</td>
</tr>
<tr>
<td>5</td>
<td>P06-10</td>
<td>700</td>
<td>2.1</td>
<td>10</td>
<td>45</td>
<td>430 x 360 x 480</td>
</tr>
<tr>
<td>6</td>
<td>77-193/700</td>
<td>700</td>
<td>3.0</td>
<td>13</td>
<td>60</td>
<td>420 x 380 x 480</td>
</tr>
<tr>
<td>7</td>
<td>P06-25</td>
<td>700</td>
<td>2.1</td>
<td>25</td>
<td>60</td>
<td>430 x 360 x 480</td>
</tr>
</tbody>
</table>

Additional Information

Brochure / operating manuals
Tensioning Accessories

For the daily use of our jacks and equipment, we offer accessories that are robust, easy to use and perfectly suitable for on-site use. They are perfectly adapted to individual applications and the equipment used, thus facilitating work and ensuring a fast construction progress.

For clamping the strands easily and safely, our equipment either includes an in-built self-clamping device or a clamping bush that is mounted directly behind the jack. Additionally, the jack can be equipped with a wedging device for actively force-fitting the anchor wedges of strand anchors.

Special stressing chairs ensure an easy positioning of the jacks as well as permanent control of the wedge seating and allowance for tolerances during the tensioning and tying down of the anchors.

When used on bar systems, the anchor nuts can be tightened using a hand ratchet or screwed inside the stressing chair using a driver sleeve.

Force / Displacement Measurement

For monitoring installation, tensioning for performance and proof tests and for the long-term controlling of forces, we offer a comprehensive range of measuring equipment such as analog and digital load cells and length gauges of up to 750mm elongation.

Our special force measuring system DYNA Force® allows an extremely precise readout of the anchor forces in strands and bars. The contact-free measuring is carried out inside the anchor so that no troublesome external devices have to be placed at the anchor head.

Additional Information

Brochure / operating manuals
DYWIDAG Equipment

Torque Equipment
Anchorage elements and coupler connections can be countered for minimizing slippage in anchorages and threadbar connections and for increasing fatigue resistance. By defined tightening, the GEWI® and GEWI® Plus screw parts are tensioned against each other so that the spliced bars cannot be distinguished from non-spliced bars with regards to stress-strain behavior.

In addition, systems for alternating loads can be developed so deformation resistant by countering that a large number of load changes does not have any influence on the load-bearing behavior of the connections and anchorages.

DSI offers manual torque wrenches and hydraulic impact wrenches that cover the complete force range.

In conjunction with specially developed extension and adapter designs, these tools ensure trouble-free installation and efficient work flows. Regular inspections guarantee highest safety standards to eliminate possible risks for the operator and the environment. In our internal workshops, the equipment is regularly maintained, checked and repaired quickly and economically if needed.

Technical Data

<table>
<thead>
<tr>
<th>Torque Equipment</th>
<th>Type</th>
<th>Force range [kNm]</th>
<th>Standard equipment for GEWI® Ø [mm]</th>
<th>GEWI® Plus Ø [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSG 4</td>
<td>manual</td>
<td>max. 0.4</td>
<td>12 - 20</td>
<td></td>
</tr>
<tr>
<td>DSG 5</td>
<td>manual</td>
<td>0.4 - 1.2</td>
<td>20 - 28</td>
<td>18 - 25</td>
</tr>
<tr>
<td>DSG 7</td>
<td>manual</td>
<td>0.8 - 2.0</td>
<td>28 - 32</td>
<td>28 - 30</td>
</tr>
<tr>
<td>Type 60</td>
<td>hydraulic</td>
<td>0.3 - 3.0</td>
<td>40</td>
<td>35</td>
</tr>
<tr>
<td>Type 150</td>
<td>hydraulic</td>
<td>1.1 - 8.0</td>
<td>50</td>
<td>43</td>
</tr>
<tr>
<td>Type 200</td>
<td>hydraulic</td>
<td>2.0 - 16.0</td>
<td>63</td>
<td>57.5 - 63.5</td>
</tr>
<tr>
<td>Type 300</td>
<td>hydraulic</td>
<td>3.0 - 25.0</td>
<td>75</td>
<td></td>
</tr>
</tbody>
</table>

Hydraulic torque equipment is supplied as a complete set including matching hydraulic power unit.

Manual Type DSG Torque Wrench

Hydraulic Torque Equipment, Type 200, complete

High Power Wrench with Bridge, Type 200

Additional Information

Brochure / operating manuals
<table>
<thead>
<tr>
<th>Country</th>
<th>Address</th>
<th>Contact Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Montenegro</td>
<td>EnCon d.o.o. 3, Cara Lazara Street 11000 Belgrade Serbia</td>
<td>Phone +381-11-328 12 73</td>
</tr>
<tr>
<td>Netherlands</td>
<td>DYWIDAG-Systems International B.V. Velingsweg 2 5301 KM Zaltbommel</td>
<td>Phone +31-418-57 89 22 E-mail email.nl@dywidag-systems.com www.dywidag-systems.com</td>
</tr>
<tr>
<td>Norway</td>
<td>DYWIDAG Norge AS Norvald Strands veg 21 2206 Kongsvinger Norway</td>
<td>Phone +47-62-88 86 80 E-mail dywidag-norge.no www.dywidag-norge.no</td>
</tr>
<tr>
<td>Peru</td>
<td>DSI Peru S.A.C. Calle Uno Oeste 0061 Of. 103 San Isidro-Lima 1 / Peru</td>
<td>Phone +51-1-224 54 54 E-mail construccion.peru@dsilatinamerica.com www.dsi-peru.com</td>
</tr>
<tr>
<td>Poland</td>
<td>DYWIDAG-Systems International Sp. z o.o. ul. Bojowników o Wolność i Demokrację 38/121 41-506 Chorzów Poland</td>
<td>Phone +48-32-241 09 98 E-mail dsi-polska@dywidag-systems.com www.dywidag-systems.pl</td>
</tr>
<tr>
<td>Portugal</td>
<td>DYWIDAG SISTEMAS CONSTRUCTIVOS, SA Rua D. Manuel, n.º 24 A Quinta da Pareireinha 2695-003 Bobadela (Loures) Portugal</td>
<td>Phone +351-21-892 28 90 E-mail dywidag@dywidag-sistemas.com</td>
</tr>
<tr>
<td>Qatar</td>
<td>QACS (Qatar Australian Construction Systems W.L.L.) Al Thumama, new Compound, Street No 911, Villa no 56 - 17, Area no 46 E Ring road, Near to Electric Office P.O. Box 24893 Doha / Qatar</td>
<td>Phone +974-44-58 04 11 www.qacs.bz</td>
</tr>
<tr>
<td>Russia</td>
<td>DSI-PSK OOO Joint Venture Lenininsky prospekt, d. 105, korp. 4 Moscow 119421 Russia</td>
<td>Phone +7-495-234 25 02 www.psk-holding.ru</td>
</tr>
<tr>
<td>Saudi Arabia</td>
<td>DYWIDAG-Systems International „DSI“, Riyadh P.O. Box 53039, Riyadh, 11583 Saudi Arabia</td>
<td>Phone +966-1-46 50 311 ext. 106</td>
</tr>
<tr>
<td>Serbia</td>
<td>EnCon d.o.o. 3, Cara Lazara Street 11000 Belgrade Serbia</td>
<td>Phone +381-11-328 12 73</td>
</tr>
<tr>
<td>Singapore</td>
<td>UTRACON STRUCTURAL SYSTEMS PTE LTD 7 E Pioneer Sector 1 Singapore 628446 Phone +65-64-15 30 78</td>
<td>E-mail utracon@utracon.com www.utracon.com</td>
</tr>
<tr>
<td>Slovakia</td>
<td>Doprastav, a.s. Závod Přehrada D1 821 01 Bratislava Slovakia Phone +421-2-48 271 130</td>
<td></td>
</tr>
<tr>
<td>South Africa</td>
<td>DYWIDAG-Systems International Pty. Ltd. 30 North Reef Road Elandsfontein Gauteng 1412 South Africa Phone +27-11-878 68 00 E-mail dsd@dywidag.co.za www.dywidag-sa.com</td>
<td></td>
</tr>
<tr>
<td>Spain</td>
<td>DYWIDAG SISTEMAS CONSTRUCTIVOS, S.A. Avd/de la Industria, 4 Pol. Ind. la Cantuena 28947 Fuenlabrada (Madrid) Spain</td>
<td>Phone +34-91-642 20 72 E-mail dywidag@dywidag-sistemas.com www.dywidag-sistemas.com</td>
</tr>
<tr>
<td>Switzerland</td>
<td>SpannStahl AG Industriegebiet Waesseristrasse 29 8340 Hinwil/ZH Switzerland</td>
<td>Phone +41-44-9 38 97 97 E-mail info@spannstahl.ch www.spannstahl.ch</td>
</tr>
<tr>
<td>Taiwan</td>
<td>DYWITECH Co. Ltd. 13th Fl.-3, No. 163, Sec. 1, Keelung Road Taipei 110 Taiwan, R.O.C. Phone +886-2-27 48 10 76</td>
<td></td>
</tr>
<tr>
<td>Thailand</td>
<td>D-Tech Postten Co., Ltd. 91/22 Suwinthawong road Minburi district, Minburi Bangkok 10510 Thailand</td>
<td>Phone +66-2543-77 61</td>
</tr>
<tr>
<td>Turkey</td>
<td>DIVIGER Yapı Teknoloji A.S. Yıldız Posta Cad. Ayıldız Sitesi 30/15 34349 İstanbul-Gayrettepe Turkey</td>
<td>Phone +90-212-234 56 12 E-mail diviger@diviger.com</td>
</tr>
<tr>
<td>United Arab Emirates (U.A.E.)</td>
<td>DYWIDAG-Systems International P.O. Box 234085. Dubai; United Arab Emirates Phone +971-5558-8 02 75 E-Mail shemi.psi@dywidag-systems.com</td>
<td></td>
</tr>
</tbody>
</table>
Please note:
This brochure serves basic information purposes only. Technical data and information provided herein shall be considered non-binding and may be subject to change without notice. We do not assume any liability for losses or damages attributed to the use of this technical data and any improper use of our products. Should you require further information on particular products, please do not hesitate to contact us.